We are currently in the process of developing an interactive dashboard that includes all 967 validation studies. As a first step, we enter all relevant information from the studies into a database. Thereafter, we are planning to set up an interactive dashboard with various functions such as filtering by specific wearables, wearing positions, or other information. In the future, researchers should be able to regularly add recent validation studies independently in the sense of a repository.
On the way to our vision, we will start with a list of identified wearables and link the identified validation studies for each device (in progress).
#
Company: BioTel Ltd., Bristol, UK
Literature:
Company: BioTel Ltd., Bristol, UK
Literature:
- Horner, F. E., Slade, J., & Bilzon, J. L. (2013). The effect of anatomical placement and trunk adiposity on the reliability and validity of triaxial accelerometer output during treadmill exercise. Journal of Physical Activity and Health, 10(8), 1193-1200.
- Ojiambo, R., Konstabel, K., Veidebaum, T., Reilly, J., Verbestel, V., Huybrechts, I., ... & Pitsiladis, Y. P. (2012). Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study. Journal of applied physiology, 113(10), 1530-1536.
- Horner, F. E., Rayson, M. P., & Bilzon, J. L. (2011). Reliability and validity of the 3DNX accelerometer during mechanical and human treadmill exercise testing. International Journal of Obesity, 35(1), S88-S97.
A
Company: Philips Respironics Inc., Murrysville PA, USA
Link: https://www.usa.philips.com/healthcare/sites/actigraphy
Literature:
- Borghese, M. M., Lin, Y., Chaput, J. P., & Janssen, I. (2018). Estimating sleep efficiency in 10-to-13-year-olds using a waist-worn accelerometer. Sleep Health, 4(1), 110-115.
- Ettienne, R., Nigg, C. R., Li, F., Su, Y., McGlone, K., Luick, B., ... & Novotny, R. (2016). Validation of the Actical Accelerometer in multiethnic preschoolers: the children's healthy living (Chl) program. Hawai'i Journal of Medicine & Public Health, 75(4), 95.
- Hager, E. R., Gormley, C. E., Latta, L. W., Treuth, M. S., Caulfield, L. E., & Black, M. M. (2016). Toddler physical activity study: Laboratory and community studies to evaluate accelerometer validity and correlates. BMC Public Health, 16(1), 1-10.
- Hager, E. R., Treuth, M. S., Gormely, C., Epps, L., Snitker, S., & Black, M. M. (2015). Ankle accelerometry for assessing physical activity among adolescent girls: threshold determination, validity, reliability, and feasibility. Research quarterly for exercise and sport, 86(4), 397-405.
- Johnson, M. (2015). Activity monitors step count accuracy in community-dwelling older adults. Gerontology and geriatric medicine, 1, 2333721415601303.
- Johnson, M., Meltz, K., Hart, K., Schmudlach, M., Clarkson, L., & Borman, K. (2015). Validity of the Actical activity monitor for assessing steps and energy expenditure during walking. Journal of Sports Sciences, 33(8), 769-776.
- Rosenkranz, R. R., Rosenkranz, S. K., & Weber, C. (2011). Validity of the Actical accelerometer step-count function in children. Pediatric exercise science, 23(3), 355-365.
- Esliger, D. W., Probert, A., Bryan, S., Laviolette, M., & Tremblay, M. S. (2007). Validity of the Actical accelerometer step-count function. Medicine and Science in Sports and Exercise, 39(7), 1200-1204
- Kayes, N. M., Schluter, P. J., McPherson, K. M., Leete, M., Mawston, G., & Taylor, D. (2009). Exploring actical accelerometers as an objective measure of physical activity in people with multiple sclerosis. Archives of physical medicine and rehabilitation, 90(4), 594-601.
- Pfeiffer, K. A., Mciver, K. L., Dowda, M., Almeida, M. J., & Pate, R. R. (2006). Validation and calibration of the Actical accelerometer in preschool children. Medicine & Science in Sports & Exercise, 38(1), 152-157.
Company: Philips Respironics Inc., Murrysville PA, USA
Link: https://www.usa.philips.com/healthcare/sites/actigraphy
Literature:
Company: ActiGraph LLC., Pensacola, FL, USA
Link: https://theactigraph.com/
Literature:
- Grydeland, M., Hansen, B. H., Ried-Larsen, M., Kolle, E., & Anderssen, S. A. (2014). Comparison of three generations of ActiGraph activity monitors under free-living conditions: do they provide comparable assessments of overall physical activity in 9-year old children?. BMC sports science, medicine and rehabilitation, 6, 1-8.
- Krishnaveni, G. V., Mills, I. C., Veena, S. R., Wootton, S. A., Wills, A. K., Coakley, P. J., ... & Fall, C. H. D. (2009). Accelerometers for measuring physical activity behavior in Indian children. Indian Pediatr, 46(12), 1055-62.
- Krishnaveni, G. V., Veena, S. R., Kuriyan, R., Kishore, R. P., Wills, A. K., Nalinakshi, M., ... & Kurpad, A. V. (2009). Relationship between physical activity measured using accelerometers and energy expenditure measured using doubly labelled water in Indian children. European Journal of Clinical Nutrition, 63(11), 1313-1319.
- Stone, M. R., Esliger, D. W., & Tremblay, M. S. (2007). Comparative validity assessment of five activity monitors: does being a child matter?. Pediatric Exercise Science, 19(3), 291-309.
- Hands, B., & Larkin, D. (2006). Physical activity measurement methods for young children: A comparative study. Measurement in Physical Education and Exercise Science, 10(3), 203-214.
- Pate, R. R., Almeida, M. J., McIver, K. L., Pfeiffer, K. A., & Dowda, M. (2006). Validation and calibration of an accelerometer in preschool children. Obesity, 14(11), 2000-2006.
- Corder, K., Brage, S., Wareham, N. J., & Ekelund, U. (2005). Comparison of PAEE from combined and separate heart rate and movement models in children. Medicine and science in sports and exercise, 37(10), 1761-1767.
- Eisenmann, J. C., Strath, S. J., Shadrick, D., Rigsby, P., Hirsch, N., & Jacobson, L. (2004). Validity of uniaxial accelerometry during activities of daily living in children. European Journal of Applied Physiology, 91, 259-263.
- Ekelund, U., Tingström, P., Kamwendo, K., Krantz, M., Nylander, E., Sjöström, M., & Bergdahl, B. (2002). The validity of the Computer Science and Applications activity monitor for use in coronary artery disease patients during level walking. Clinical physiology and functional imaging, 22(4), 248-253.
- Trost, S. G., Ward, D. S., Moorehead, S. M., Watson, P. D., Riner, W., & Burke, J. R. (1998). Validity of the computer science and applications (CSA) activity monitor in children. Medicine and science in sports and exercise, 30(4), 629-633.
Company: Ambulatory Monitoring Inc., Ardsley, NY, USA
Link: https://www.ambulatory-monitoring.com/
Literature:
Company: ActiGraph LLC., Pensacola, FL, USA
Link: https://theactigraph.com/
Literature:
- Al-Hadabi, B., & Sassi, R. H. (2019). Sedentary behavior and physical activity classification using accelerometer cut points in 9–11-year-old children. Science & Sports, 34(1), 30-39.
- Hewitt, Lyndel; Stanley, Rebecca M.; Cliff, Dylan; Okely, Anthony D. (2019): Objective measurement of tummy time in infants (0-6 months): A validation study. In: PLoS ONE 14 (2). DOI: 10.1371/journal.pone.0210977.
- Wendel, N., Macpherson, C. E., Webber, K., Hendron, K., DeAngelis, T., Colon-Semenza, C., & Ellis, T. (2018). Accuracy of activity trackers in Parkinson disease: should we prescribe them?. Physical therapy, 98(8), 705-714.
- García-Prieto, J. C., Martinez-Vizcaino, V., García-Hermoso, A., Sánchez-López, M., Arias-Palencia, N., Fonseca, J. F. O., & Mora-Rodriguez, R. (2017). Energy expenditure in playground games in primary school children measured by accelerometer and heart rate monitors. International journal of sport nutrition and exercise metabolism, 27(5), 467-474.
- Almeida, G. J., Wert, D. M., Brower, K. S., & Piva, S. R. (2015). Validity of physical activity measures in individuals after total knee arthroplasty. Archives of physical medicine and rehabilitation, 96(3), 524-531.
- Feito, Y.; Garner, H. R.; Bassett, D. R. (2015): Evaluation of ActiGraph's low-frequency filter in laboratory and free-living environments. In: Medicine and Science in Sports and Exercise 47 (1), S. 211-217. DOI: 10.1249/MSS.0000000000000395.
- van Nassau, F., Chau, J. Y., Lakerveld, J., Bauman, A. E., & van der Ploeg, H. P. (2015). Validity and responsiveness of four measures of occupational sitting and standing. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 1-9.
- Herman Hansen, B., Børtnes, I., Hildebrand, M., Holme, I., Kolle, E., & Anderssen, S. A. (2014). Validity of the ActiGraph GT1M during walking and cycling. Journal of sports sciences, 32(6), 510-516.
- Myers, J., Dupain, M., Vu, A., Jaffe, A., Smith, K., Fonda, H., & Dalman, R. (2014). Agreement between activity-monitoring devices during home rehabilitation: a substudy of the AAA STOP trial. Journal of Aging and Physical Activity, 22(1), 87-95.
- De Decker, E., De Craemer, M., Santos-Lozano, A., Van Cauwenberghe, E., De Bourdeaudhuij, I., & Cardon, G. (2013). Validity of the ActivPAL™ and the ActiGraph monitors in preschoolers. Medicine and science in sports and exercise, 45(10), 2002-2011.
- Durkalec-Michalski, K., Woźniewicz, M., Bajerska, J., & Jeszka, J. (2013). Comparison of accuracy of various non-calorimetric methods measuring energy expenditure at different intensities. Human Movement, 14(2), 161-167.
- Hallal, P. C., Reichert, F. F., Clark, V. L., Cordeira, K. L., Menezes, A. M., Eaton, S., ... & Wells, J. C. (2013). Energy expenditure compared to physical activity measured by accelerometry and self-report in adolescents: a validation study. PLoS One, 8(11), e77036.
- Hänggi, J. M., Phillips, L. R., & Rowlands, A. V. (2013). Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. Journal of science and Medicine in Sport, 16(1), 40-44.
- Jimmy, G., Seiler, R., & Mäder, U. (2013). Comparing the validity and output of the GT1M and GT3X accelerometer in 5-to 9-year-old children. Measurement in Physical Education and Exercise Science, 17(3), 236-248.
- Kelly, Louise A.; McMillan, Duncan G. E.; Anderson, Alexandra; Fippinger, Morgan; Fillerup, Gunnar; Rider, Jane (2013): Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. In: BMC Medical Physics 13 (1), S. 1-17. DOI: 10.1186/1756-6649-13-5.
- Brown, D. K., Grimwade, D., Martinez-Bussion, D., Taylor, M. J. D., & Gladwell, V. F. (2012). The validity of the ActiPed for physical activity monitoring. International journal of sports medicine, 431-437.
- Feito, Y., Bassett, D. R., & Thompson, D. L. (2012). Evaluation of activity monitors in controlled and free-living environments. Medicine & Science in Sports & Exercise, 44(4), 733-741.
- Hislop, J. F., Bulley, C., Mercer, T. H., & Reilly, J. J. (2012). Comparison of epoch and uniaxial versus triaxial accelerometers in the measurement of physical activity in preschool children: a validation study. Pediatric Exercise Science, 24(3), 450-460.
- Kinder, J. R., Lee, K. A., Thompson, H., Hicks, K., Topp, K., & Madsen, K. A. (2012). Validation of a hip-worn accelerometer in measuring sleep time in children. Journal of pediatric nursing, 27(2), 127-133.
- Warolin, J., Carrico, A. R., Whitaker, L. E., Wang, L., Chen, K. Y., Acra, S., & Buchowski, M. S. (2012). Effect of BMI on prediction of accelerometry-based energy expenditure in youth. Medicine and science in sports and exercise, 44(12), 2428.
- Arvidsson, D., Fitch, M., Hudes, M. L., Tudor-Locke, C., & Fleming, S. E. (2011). Accelerometer response to physical activity intensity in normal-weight versus overweight African American children. Journal of Physical Activity and Health, 8(5), 682-692.
- Colbert, L. H., Matthews, C. E., Havighurst, T. C., Kim, K., & Schoeller, D. A. (2011). Comparative validity of physical activity measures in older adults. Medicine and science in sports and exercise, 43(5), 867.
- Kuffel, E. E., Crouter, S. E., Haas, J. D., Frongillo, E. A., & Bassett, D. R. (2011). Validity of estimating minute-by-minute energy expenditure of continuous walking bouts by accelerometry. International Journal of Behavioral Nutrition and Physical Activity, 8, 1-7.
- Ruch, N., Rumo, M., & Mäder, U. (2011). Recognition of activities in children by two uniaxial accelerometers in free-living conditions. European journal of applied physiology, 111, 1917-1927.
- McClain, J. J., Hart, T. L., Getz, R. S., & Tudor-Locke, C. (2010). Convergent validity of 3 low cost motion sensors with the ActiGraph accelerometer. Journal of Physical Activity and Health, 7(5), 662-670.
- Rothney, M. P., Brychta, R. J., Meade, N. N., Chen, K. Y., & Buchowski, M. S. (2010). Validation of the ActiGraph two–regression model for predicting energy expenditure. Medicine and science in sports and exercise, 42(9), 1785.
- Chou, T. G. R., Webster, J. B., Shahrebani, M., Roberts, T. L., & Bloebaum, R. D. (2009). Characterization of step count accuracy of actigraph activity monitor in persons with lower limb amputation. JPO: Journal of Prosthetics and Orthotics, 21(4), 208-214.
- Krishnaveni, G. V., Mills, I. C., Veena, S. R., Wootton, S. A., Wills, A. K., Coakley, P. J., ... & Fall, C. H. D. (2009). Accelerometers for measuring physical activity behavior in Indian children. Indian Pediatr, 46(12), 1055-62.
- Abel, M. G., Hannon, J. C., Sell, K., Lillie, T., Conlin, G., & Anderson, D. (2008). Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. Applied Physiology, Nutrition, and Metabolism, 33(6), 1155-1164.
Company: ActiGraph LLC., Pensacola, FL, USA
Link: https://theactigraph.com/
Literature:
Lenz, Elizabeth K.; Starkoff, Brooke E.; Lieberman, Lauren J.; Too, Danny (2021): The Validation of the Actigraph GT3X Step Counter in Youth Who Are Blind. In: Journal of Blindness Innovation & Research 11 (1), N.PAG-N.PAG. DOI: 10.5241/11-202.
- Lawal, T. A.; Todd, J. J.; Elliott, J. S.; Linton, M. M.; Andres, M.; Witherspoon, J. W. et al. (2020): Assessing Motor Function in Congenital Muscular Dystrophy Patients Using Accelerometry. In: Journal of Neuroscience Nursing 52 (4), S. 172-178. DOI: 10.1097/JNN.0000000000000519.
- Marcotte, R. T., Petrucci Jr, G. J., Cox, M. F., Freedson, P. S., Staudenmayer, J. W., & Sirard, J. R. (2020). Estimating sedentary time from a hip-and wrist-worn accelerometer. Medicine and science in sports and exercise, 52(1), 225.
- O’Driscoll, R.; Turicchi, J.; Hopkins, M.; Gibbons, C.; Larsen, S. C.; Palmeira, A. L. et al. (2020): The validity of two widely used commercial and research-grade activity monitors, during resting, household and activity behaviours. In: Health and Technology 10 (3), S. 637-648. DOI: 10.1007/s12553-019-00392-7.
- Smith, C., Galland, B., Taylor, R., & Meredith-Jones, K. (2020). ActiGraph GT3X+ and actical wrist and hip worn accelerometers for sleep and wake indices in young children using an automated algorithm: validation with polysomnography. Frontiers in psychiatry, 10, 958.
- Anderson, J. L., Yoward, L. S., & Green, A. J. (2019). A study investigating the validity of an accelerometer in quantification of step count in adult hospital inpatients recovering from critical illness. Clinical Rehabilitation, 33(5), 936-942.
- Faria, Giselle S.; Polese, Janaine C.; Ribeiro-Samora, Giane A.; Scianni, Aline A.; Faria, Christina D.C.M.; Teixeira-Salmela, Luci F. (2019): Validity of the accelerometer and smartphone application in estimating energy expenditure in individuals with chronic stroke. In: Brazilian Journal of Physical Therapy / Revista Brasileira de Fisioterapia 23 (3), S. 236-243. DOI: 10.1016/j.bjpt.2018.08.003.
- Morris, C. E., Wessel, P. A., Tinius, R. A., Schafer, M. A., & Maples, J. M. (2019). Validity of activity trackers in estimating energy expenditure during high-intensity functional training. Research Quarterly for Exercise and Sport, 90(3), 377-384.
- Murakami, H.; Kawakami, R.; Nakae, S.; Yamada, Y.; Nakata, Y.; Ohkawara, K. et al. (2019): Accuracy of 12 wearable devices for estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method: Validation study. In: Journal of Medical Internet Research 21 (8). DOI: 10.2196/13938.
- Sacko, Ryan; McIver, Kerry; Brazendale, Keith; Pfeifer, Craig; Brian, Ali; Nesbitt, Danielle; Stodden, David F. (2019): Comparison of Indirect Calorimetry- and Accelerometry-Based Energy Expenditure During Children’s Discrete Skill Performance. In: Research Quarterly for Exercise & Sport 90 (4), S. 629-640. DOI: 10.1080/02701367.2019.1642440.
- Agogo, G. O., Van Der Voet, H., Hulshof, P. J., van’t Veer, P., Trijsburg, L., van Eeuwijk, F. A., & Boshuizen, H. C. (2018). Validation of accelerometer for measuring physical activity in free-living individuals. Baltic Journal of Health and Physical Activity, 10(1), 1.
- Byun, W., Lee, J. M., Kim, Y., & Brusseau, T. A. (2018). Classification accuracy of a wearable activity tracker for assessing sedentary behavior and physical activity in 3–5-year-old children. International Journal of Environmental Research and Public Health, 15(4), 594.
- Compagnat, M., Mandigout, S., Chaparro, D., Daviet, J. C., & Salle, J. Y. (2018). Validity of the Actigraph GT3x and influence of the sensor positioning for the assessment of active energy expenditure during four activities of daily living in stroke subjects. Clinical rehabilitation, 32(12), 1696-1704.
- Hergenroeder, A. L., Barone Gibbs, B., Kotlarczyk, M. P., Kowalsky, R. J., Perera, S., & Brach, J. S. (2018). Accuracy of objective physical activity monitors in measuring steps in older adults. Gerontology and Geriatric Medicine, 4, 2333721418781126.
- Hurter, Liezel; Fairclough, Stuart J.; Knowles, Zoe R.; Porcellato, Lorna A.; Cooper-Ryan, Anna M.; Boddy, Lynne M. (2018): Establishing Raw Acceleration Thresholds to Classify Sedentary and Stationary Behaviour in Children. In: CHILDREN-BASEL 5 (12). DOI: 10.3390/children5120172.
- Kim, Y., & Lochbaum, M. (2018). Comparison of polar active watch and waist-and wrist-worn ActiGraph accelerometers for measuring children’s physical activity levels during unstructured afterschool programs. International journal of environmental research and public health, 15(10), 2268.
- Matthews, C. E., Keadle, S. K., Moore, S. C., Schoeller, D. S., Carroll, R. J., Troiano, R. P., & Sampson, J. N. (2018). Measurement of active and sedentary behavior in context of large epidemiologic studies. Medicine and science in sports and exercise, 50(2), 266.
- O’brien, M. W.; Wojcik, W. R.; Fowles, J. R. (2018): Medical-grade physical activity monitoring for measuring step count and moderate-to-vigorous physical activity: Validity and reliability study. In: JMIR mHealth and uHealth 6 (9). DOI: 10.2196/10706.
- Alhassan, S., Sirard, J. R., Kurdziel, L. B., Merrigan, S., Greever, C., & Spencer, R. M. (2017). Cross-validation of two accelerometers for assessment of physical activity and sedentary time in preschool children. Pediatric exercise science, 29(2), 268-277.
- Dieu, O.; Mikulovic, J.; Fardy, P. S.; Bui-Xuan, G.; Béghin, L.; Vanhelst, J. (2017): Physical activity using wrist-worn accelerometers: comparison of dominant and non-dominant wrist. In: Clinical Physiology and Functional Imaging 37 (5), S. 525-529. DOI: 10.1111/cpf.12337.
- Imboden, M. T., Nelson, M. B., Kaminsky, L. A., & Montoye, A. H. (2017). Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. British journal of sports medicine.
- Feehan, L. M., Goldsmith, C. H., Leung, A. Y., & Li, L. C. (2016). SenseWearMini and Actigraph GT3X accelerometer classification of observed sedentary and light-intensity physical activities in a laboratory setting. Physiotherapy Canada, 68(2), 116-123.
- Hickey, A., John, D., Sasaki, J. E., Mavilia, M., & Freedson, P. (2016). Validity of activity monitor step detection is related to movement patterns. Journal of Physical Activity and Health, 13(2), 145-153.
- Feito, Y., Garner, H. R., & Bassett, D. R. (2015). Evaluation of ActiGraph's low-frequency filter in laboratory and free-living environments. Kennesaw, GA, USA: DigitalCommons@ Kennesaw State University.
- Kim, Y.; Barry, V. W.; Kang, M. (2015): Validation of the ActiGraph GT3X and activPAL Accelerometers for the Assessment of Sedentary Behavior. In: Measurement in Physical Education and Exercise Science 19 (3), S. 125-137. DOI: 10.1080/1091367X.2015.1054390.
- Strath, S. J., Kate, R. J., Keenan, K. G., Welch, W. A., & Swartz, A. M. (2015). Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age. Physiological measurement, 36(11), 2335.
- Anastasopoulou, P.; Tubic, M.; Schmidt, S.; Neumann, R.; Woll, A.; Härtel, S. (2014): Validation and comparison of two methods to assess human energy expenditure during free-living activities. In: PLoS ONE 9 (2). DOI: 10.1371/journal.pone.0090606.
- Berendsen, B.A.J.; Hendriks, M.R.C.; Meijer, K.; Plasqui, G.; Schaper, N. C.; Savelberg, H.H.C.M. (2014): Which activity monitor to use? Validity, reproducibility and user friendliness of three activity monitors. In: BMC Public Health 14 (1). DOI: 10.1186/1471-2458-14-749.
- Calabró, M. A.; Lee, J.-M.; Saint-Maurice, P. F.; Yoo, H.; Welk, G. J. (2014): Validity of physical activity monitors for assessing lower intensity activity in adults. In: International Journal of Behavioral Nutrition and Physical Activity 11 (1). DOI: 10.1186/s12966-014-0119-7.
- O'Neil, M. E., Fragala-Pinkham, M. A., Forman, J. L., & Trost, S. G. (2014). Measuring reliability and validity of the ActiGraph GT3X accelerometer for children with cerebral palsy: a feasibility study. Journal of pediatric rehabilitation medicine, 7(3), 233-240.
- Saunders, T. J.; Gray, C. E.; Borghese, M. M.; McFarlane, A.; Mbonu, A.; Ferraro, Z. M.; Tremblay, M. S. (2014): Validity of SC-StepRx pedometer-derived moderate and vigorous physical activity during treadmill walking and running in a heterogeneous sample of children and youth. In: BMC Public Health 14 (1). DOI: 10.1186/1471-2458-14-519.
- Dannecker, K. L.; Sazonova, N. A.; Melanson, E. L.; Sazonov, E. S.; Browning, R. C. (2013): A comparison of energy expenditure estimation of several physical activity monitors. In: Medicine and Science in Sports and Exercise 45 (11), S. 2105-2112. DOI: 10.1249/MSS.0b013e318299d2eb.
- Hall, K. S.; Howe, C. A.; Rana, S. R.; Martin, C. L.; Morey, M. C. (2013): METs and accelerometry of walking in older adults: Standard versus measured energy cost. In: Medicine and Science in Sports and Exercise 45 (3), S. 574-582. DOI: 10.1249/MSS.0b013e318276c73c.
- Hänggi, J. M.; Phillips, L.R.S.; Rowlands, A. V. (2013): Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. In: Journal of Science and Medicine in Sport 16 (1), S. 40-44. DOI: 10.1016/j.jsams.2012.05.012.
- Jimmy, G.; Seiler, R.; Mäder, U. (2013): Comparing the validity and output of the GT1M and GT3X accelerometer in 5-to 9-year-old children. In: Measurement in Physical Education and Exercise Science 17 (3), S. 236-248. DOI: 10.1080/1091367X.2013.805140.
- Kelly, Louise A.; McMillan, Duncan G. E.; Anderson, Alexandra; Fippinger, Morgan; Fillerup, Gunnar; Rider, Jane (2013): Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. In: BMC Medical Physics 13 (1), S. 1-17. DOI: 10.1186/1756-6649-13-5.
- Kerr, J., Marshall, S. J., Godbole, S., Chen, J., Legge, A., Doherty, A. R., ... & Foster, C. (2013). Using the SenseCam to improve classifications of sedentary behavior in free-living settings. American journal of preventive medicine, 44(3), 290-296.
- Pulakka, A.; Cheung, Y. B.; Ashorn, U.; Penpraze, V.; Maleta, K.; Phuka, J. C.; Ashorn, P. (2013): Feasibility and validity of the ActiGraph GT3X accelerometer in measuring physical activity of Malawian toddlers. In: Acta Paediatrica 102 (12), S. 1192-1198. DOI: 10.1111/apa.12412.
- Rabinovich, R. A., Louvaris, Z., Raste, Y., Langer, D., Van Remoortel, H., Giavedoni, S., ... & Troosters, T. (2013). Validity of physical activity monitors during daily life in patients with COPD. European Respiratory Journal, 42(5), 1205-1215.
- Santos-Lozano, A.; Santin-Medeiros, F.; Cardon, G.; Torres-Luque, G.; Bailon, R.; Bergmeir, C. et al. (2013): Actigraph GT3X: Validation and Determination of Physical Activity Intensity Cut Points. In: International Journal of Sports Medicine 34 (11), S. 975-982. DOI: 10.1055/s-0033-1337945.
- Dowd, K. P.; Harrington, D. M.; Donnelly, A. E. (2012): Criterion and Concurrent Validity of the activPAL™ Professional Physical Activity Monitor in Adolescent Females. In: PLoS ONE 7 (10). DOI: 10.1371/journal.pone.0047633.
- Feito, Y.; Bassett, D. R.; Thompson, D. L. (2012): Evaluation of activity monitors in controlled and free-living environments. In: Medicine and Science in Sports and Exercise 44 (4), S. 733-741. DOI: 10.1249/MSS.0b013e3182351913.
- Lyden, K., Kozey-Keadle, S. L., Staudenmayer, J. W., & Freedson, P. S. (2012). Validity of two wearable monitors to estimate breaks from sedentary time. Medicine and science in sports and exercise, 44(11), 2243.
- Sandroff, Brian M.; Motl, Robert W.; Suh, Yoojin (2012): Accelerometer output and its association with energy expenditure in persons with multiple sclerosis. In: Journal of Rehabilitation Research and Development 49 (3), S. 467-475. DOI: 10.1682/jrrd.2011.03.0063.
- Vanhelst, J.; Mikulovic, J.; Bui-Xuan, G.; Dieu, O.; Blondeau, T.; Fardy, P.; Béghin, L. (2012): Comparison of two ActiGraph accelerometer generations in the assessment of physical activity in free living conditions. In: BMC Research Notes 5. DOI: 10.1186/1756-0500-5-187.
- Van Remoortel, H., Raste, Y., Louvaris, Z., Giavedoni, S., Burtin, C., Langer, D., ... & PROactive Consortium. (2012). Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PloS one, 7(6), e39198.
- Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J., & Freedson, P. S. (2011). Validation of wearable monitors for assessing sedentary behavior. Medicine & Science in Sports & Exercise, 43(8), 1561-1567.
Company: Ambulatory Monitoring Inc., Ardsley, NY, USA
Link: https://www.ambulatory-monitoring.com/
Literature:
Company: Ambulatory Monitoring Inc., Ardsley, NY, USA
Link: https://www.ambulatory-monitoring.com/
Literature:
- Jean-Louis, G., Kripke, D. F., Mason, W. J., Elliott, J. A., & Youngstedt, S. D. (2001). Sleep estimation from wrist movement quantified by different actigraphic modalities. Journal of neuroscience methods, 105(2), 185-191.
- Matthews, C. E., Freedson, P. S., Hebert, J. R., Stanek, E. 3., Merriam, P. A., & Ockene, I. S. (2000). Comparing physical activity assessment methods in the Seasonal Variation of Blood Cholesterol Study. Medicine and science in sports and exercise, 32(5), 976-984.
- Ancoli-Israel, S., Clopton, P., Klauber, M. R., Fell, R., & Mason, W. (1997). Use of wrist activity for monitoring sleep/wake in demented nursing-home patients. Sleep, 20(1), 24-27.
Company: Panasonic Electronic Works Ltd., Osaka, Japan
Link: https://industry.panasonic.eu/de
Literature:
Company: Panasonic Electronic Works Ltd., Osaka, Japan
Link: https://industry.panasonic.eu/de
Literature:
- Murakami, H., Kawakami, R., Nakae, S., Yamada, Y., Nakata, Y., Ohkawara, K., ... & Miyachi, M. (2019). Accuracy of 12 wearable devices for estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method: validation study. JMIR mHealth and uHealth, 7(8), e13938.
- Park, J., Ishikawa-Takata, K., Tanaka, S., Bessyo, K., Tanaka, S., & Kimura, T. (2017). Accuracy of estimating step counts and intensity using accelerometers in older people with or without assistive devices. Journal of aging and physical activity, 25(1), 41-50.
- Sugino, A., Minakata, Y., Kanda, M., Akamatsu, K., Koarai, A., Hirano, T., ... & Ichinose, M. (2012). Validation of a compact motion sensor for the measurement of physical activity in patients with chronic obstructive pulmonary disease. Respiration, 83(4), 300-307.
- Park, J., Ishikawa-Takata, K., Tanaka, S., Mekata, Y., & Tabata, I. (2011). Effects of walking speed and step frequency on estimation of physical activity using accelerometers. Journal of physiological anthropology, 30(3), 119-127.
Company: FitLinxx Inc., Shelton, CT, USA
Literature:
Company: PreMed AS, Oslo, Norway
Literature:
- Berntsen, S., Hageberg, R., Aandstad, A., Mowinckel, P., Anderssen, S. A., Carlsen, K. H., & Andersen, L. B. (2010). Validity of physical activity monitors in adults participating in free-living activities. British journal of sports medicine, 44(9), 657-664.
- Arvidsson, D., Slinde, F., Larsson, S., & Hulthén, L. (2009). Energy cost in children assessed by multisensor activity monitors. Medicine Science in Sports Exercise, 41(3), 603.
- Hustvedt, B. E., Christophersen, A., Johnsen, L. R., Tomten, H., McNeill, G., Haggarty, P., & Løvø, A. (2004). Description and validation of the ActiReg®: a novel instrument to measure physical activity and energy expenditure. British Journal of Nutrition, 92(6), 1001-1008.
Company: IM Systems Inc., Baltimore, Maryland
Literature:
- Vallières, A., & Morin, C. M. (2003). Actigraphy in the assessment of insomnia. Sleep, 26(7), 902-906.
- Welk, G. J., Almeida, J. O. A. O., & Morss, G. I. N. A. (2003). Laboratory calibration and validation of the Biotrainer and Actitrac activity monitors. Medicine and Science in Sports and Exercise, 35(6), 1057-1064.
- Pollak, C. P., Tryon, W. W., Nagaraja, H., & Dzwonczyk, R. (2001). How accurately does wrist actigraphy identify the states of sleep and wakefulness?. Sleep, 24(8), 957-965.
Company: Activ4LifeHealthcare Technologies Ltd., Boroughbridge, UK
Literature:
Company: Remedy Distribution Ltd., Valkenswaard, The Netherlands
Link: https://activ8all.com/
Literature:
- Horemans, H., Kooijmans, H., van den Berg-Emons, R., & Bussmann, H. (2020). The Activ8 activity monitor: validation of posture and movement classification. Journal of Rehabilitation and Assistive Technologies Engineering, 7, 2055668319890535.
- van Rooij, W. M., van den Berg-Emons, H. J. G., Horemans, H. L., Fanchamps, M. H., de Laat, F. A., & Bussmann, J. B. (2020). Validation of a Clinically Feasible Activity Monitor Which Measures Body Postures and Movements in Adults With Lower-Limb Amputation Who Wear a Prosthesis. Journal for the Measurement of Physical Behaviour, 3(2), 135-146.
- Ummels, D., Bijnens, W., Aarts, J., Meijer, K., Beurskens, A. J., & Beekman, E. (2020). The validation of a pocket worn activity tracker for step count and physical behavior in older adults during simulated activities of daily living. Gerontology and geriatric medicine, 6, 2333721420951732.
- Claridge, E. A., van den Berg-Emons, R. J., Horemans, H. L., van der Slot, W. M., van der Stam, N., Tang, A., ... & Bussmann, J. B. (2019). Detection of body postures and movements in ambulatory adults with cerebral palsy: a novel and valid measure of physical behaviour. Journal of neuroengineering and rehabilitation, 16, 1-11.
- Oomen, J., Arts, D., Sperling, M., & Vos, S. (2019). A stepwise science-industry collaboration to optimize the calculation of energy expenditure during walking and running with a consumer-based activity device. Technology in Society, 56, 1-7.
- Valkenet, K., & Veenhof, C. (2019). Validity of three accelerometers to investigate lying, sitting, standing and walking. PloS one, 14(5), e0217545.
- Fanchamps, M. H., Horemans, H. L., Ribbers, G. M., Stam, H. J., & Bussmann, J. B. (2018). The accuracy of the detection of body postures and movements using a physical activity monitor in people after a stroke. Sensors, 18(7), 2167.
- Leving, M. T., Horemans, H. L., Vegter, R. J., De Groot, S., Bussmann, J. B., & van der Woude, L. H. (2018). Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living. PLoS One, 13(4), e0194864.
Company: Philips Respironics, Bend, USA
Literature:
Company: PAL Technologies Ltd, Glasgow, Scotland, UK
Link: https://www.palt.com/pals/
Literature:
- Gould, Zachary R.; Mora-Gonzalez, Jose; Aguiar, Elroy J.; Schuna, John M.; Barreira, Tiago V.; Moore, Christopher C. et al. (2021): A catalog of validity indices for step counting wearable technologies during treadmill walking: the CADENCE-Kids study. In: International Journal of Behavioral Nutrition & Physical Activity 18 (1), S. 1-14. DOI: 10.1186/s12966-021-01167-y.
- Stenbäck, Ville; Leppäluoto, Juhani; Leskelä, Nelli; Viitala, Linda; Vihriälä, Erkki; Gagnon, Dominique et al. (2021): Step detection and energy expenditure at different speeds by three accelerometers in a controlled environment. In: Scientific Reports 11 (1), S. 1-10. DOI: 10.1038/s41598-021-97299-z.
- Wu, Y., Johns, J. A., Poitras, J., Kimmerly, D. S., & O’Brien, M. W. (2021). Improving the criterion validity of the activPAL in determining physical activity intensity during laboratory and free-living conditions. Journal of Sports Sciences, 39(7), 826-834.
- Deans, Sarah; Kirk, Alison; McGarry, Anthony; Rowe, David (2020): Reliability and Criterion-Related Validity of the activPAL™ Accelerometer When Measuring Physical Activity and Sedentary Behavior in Adults With Lower Limb Absence. In: Journal for the measurement of physical behaviour 3 (3), S. 244-252. DOI: 10.1123/jmpb.2019-0045.
- Crowley, Patrick; Skotte, Jørgen; Stamatakis, Emmanuel; Hamer, Mark; Aadahl, Mette; Stevens, Matthew L. et al. (2019): Comparison of physical behavior estimates from three different thigh-worn accelerometers brands: a proof-of-concept for the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). In: International Journal of Behavioral Nutrition & Physical Activity 16 (1), S. 65. DOI: 10.1186/s12966-019-0835-0.
- Donahoe, Katelynn; Macdonald, Dany J.; Tremblay, Mark S.; Saunders, Travis J. (2018): Validation of PiezoRx Pedometer Derived Sedentary Time. In: International Journal of Exercise Science 11 (7), S. 552-560.
- Hergenroeder, Andrea L.; Barone Gibbs, Bethany; Kotlarczyk, Mary P.; Kowalsky, Robert J.; Perera, Subashan; Brach, Jennifer S. (2018): Accuracy of Objective Physical Activity Monitors in Measuring Steps in Older Adults. In: Gerontology & geriatric medicine 4, 2333721418781126. DOI: 10.1177/2333721418781126.
- Toth, L. P., Park, S., Springer, C. M., Feyerabend, M. D., Steeves, J. A., & Bassett, D. R. (2018). Video-recorded validation of wearable step counters under free-living conditions. Medicine and science in sports and exercise, 50(6), 1315-1322.
- Alberto, F.-P.; Nathanael, M.; Mathew, B.; Ainsworth, B. E. (2017): Wearable monitors criterion validity for energy expenditure in sedentary and light activities. In: Journal of Sport and Health Science 6 (1), S. 103-110. DOI: 10.1016/j.jshs.2016.10.005.
- An, H.-S.; Kim, Y.; Lee, J.-M. (2017): Accuracy of inclinometer functions of the activPAL and ActiGraph GT3X+: A focus on physical activity. In: Gait and Posture 51, S. 174-180. DOI: 10.1016/j.gaitpost.2016.10.014.
- Lyden, K., Keadle, S. K., Staudenmayer, J., & Freedson, P. S. (2017). The activPAL™ accurately classifies activity intensity categories in healthy adults. Medicine and science in sports and exercise, 49(5), 1022.
- Treacy, D.; Hassett, L.; Schurr, K.; Chagpar, S.; Paul, S. S.; Sherrington, C. (2017): Validity of different activity monitors to count steps in an inpatient rehabilitation setting. In: Physical therapy 97 (5), S. 581-588. DOI: 10.1093/ptj/pzx010.
- Hickey, A.; John, D.; Sasaki, J. E.; Mavilia, M.; Freedson, P. (2016): Validity of activity monitor step detection is related to movement patterns. In: Journal of Physical Activity and Health 13 (2), S. 145-153. DOI: 10.1123/jpah.2015-0203.
- Larkin, L., Nordgren, B., Purtill, H., Brand, C., Fraser, A., & Kennedy, N. (2016). Criterion validity of the activ PAL activity monitor for sedentary and physical activity patterns in people who have rheumatoid arthritis. Physical therapy, 96(7), 1093-1101.
- Mahendran, N.; Kuys, S. S.; Downie, E.; Ng, P.; Brauer, S. G. (2016): Are Accelerometers and GPS Devices Valid, Reliable and Feasible Tools for Measurement of Community Ambulation after Stroke? In: Brain Impairment 17 (2), S. 151-161. DOI: 10.1017/BrImp.2016.13
- Ridley, Kate; Ridgers, Nicola D.; Salmon, Jo (2016): Criterion validity of the activPAL™ and ActiGraph for assessing children's sitting and standing time in a school classroom setting. In: International Journal of Behavioral Nutrition & Physical Activity 13, S. 75. DOI: 10.1186/s12966-016-0402-x.
- Rosenberger, M. E.; Buman, M. P.; Haskell, W. L.; McConnell, M. V.; Carstensen, L. L. (2016): Twenty-four Hours of Sleep, Sedentary Behavior, and Physical Activity with Nine Wearable Devices. In: Medicine and Science in Sports and Exercise 48 (3), S. 457-465. DOI: 10.1249/MSS.0000000000000778.
- Stålesen, Jarle; Vik, Frøydis Nordgård; Hansen, Bjørge Herman; Berntsen, Sveinung (2016): Comparison of three activity monitors for estimating sedentary time among children. In: BMC sports science, medicine & rehabilitation 8, S. 2. DOI: 10.1186/s13102-016-0028-y.
- Downs, J.; Leonard, H.; Jacoby, P.; Brisco, L.; Baikie, G.; Hill, K. (2015): Rett syndrome: Establishing a novel outcome measure for walking activity in an era of clinical trials for rare disorders. In: Disability and Rehabilitation 37 (21), S. 1992-1996. DOI: 10.3109/09638288.2014.993436.
- Kim, Y., Barry, V. W., & Kang, M. (2015). Validation of the ActiGraph GT3X and activPAL accelerometers for the assessment of sedentary behavior. Measurement in Physical Education and Exercise Science, 19(3), 125-137.
- Kooiman, Thea J. M.; Dontje, Manon L.; Sprenger, Siska R.; Krijnen, Wim P.; van der Schans, Cees P; Groot, Martijn de (2015): Reliability and validity of ten consumer activity trackers. In: BMC sports science, medicine & rehabilitation 7, S. 24. DOI: 10.1186/s13102-015-0018-5.
- Martin, Caroline J. Hollins; Kenney, Laurence; Pratt, Thomas; GRANAT, MALCOLM H. (2015): The development and validation of an activity monitoring system for use in measurement of posture of childbearing women during first stage of labor. In: Journal of midwifery & women's health 60 (2), S. 182-186. DOI: 10.1111/jmwh.12230.
- Schneller, Mikkel B.; Pedersen, Mogens T.; Gupta, Nidhi; Aadahl, Mette; Holtermann, Andreas (2015): Validation of Five Minimally Obstructive Methods to Estimate Physical Activity Energy Expenditure in Young Adults in Semi-Standardized Settings. In: Sensors (14248220) 15 (3), S. 6133-6151. DOI: 10.3390/s150306133.
- Storm, F. A.; Heller, B. W.; Mazzà, C. (2015): Step detection and activity recognition accuracy of seven physical activity monitors. In: PLoS ONE 10 (3). DOI: 10.1371/journal.pone.0118723.
- Bania, T. (2014). Measuring physical activity in young people with cerebral palsy: validity and reliability of the ActivPAL™ monitor. Physiotherapy Research International, 19(3), 186-192.
- Bassett Jr, D. R., John, D., Conger, S. A., Rider, B. C., Passmore, R. M., & Clark, J. M. (2014). Detection of lying down, sitting, standing, and stepping using two activPAL monitors. Medicine and science in sports and exercise, 46(10), 2025-2029
- Calabró, M. A.; Lee, J.-M.; Saint-Maurice, P. F.; Yoo, H.; Welk, G. J. (2014): Validity of physical activity monitors for assessing lower intensity activity in adults. In: International Journal of Behavioral Nutrition and Physical Activity 11 (1). DOI: 10.1186/s12966-014-0119-7.
- Janssen, X., Cliff, D. P., Reilly, J. J., Hinkley, T., Jones, R. A., Batterham, M., ... & Okely, A. D. (2014). Validation and calibration of the activPAL™ for estimating METs and physical activity in 4–6 year olds. Journal of science and medicine in sport, 17(6), 602-606.
- Janssen, X., Cliff, D. P., Reilly, J. J., Hinkley, T., Jones, R. A., Batterham, M., ... & Okely, A. D. (2014). Validation of activPAL defined sedentary time and breaks in sedentary time in 4-to 6-year-olds. Pediatric Exercise Science, 26(1), 110-117.
- Lützner, C.; Voigt, H.; Roeder, I.; Kirschner, S.; Lützner, J. (2014): Placement makes a difference: Accuracy of an accelerometer in measuring step number and stair climbing. In: Gait and Posture 39 (4), S. 1126-1132. DOI: 10.1016/j.gaitpost.2014.01.022.
- McAloon, M. T., Hutchins, S., Twiste, M., Jones, R., & Forchtner, S. (2014). Validation of the activPAL activity monitor in children with hemiplegic gait patterns resultant from cerebral palsy. Prosthetics and Orthotics International, 38(5), 393-399.
- O' Donoghue, Deirdre; Kennedy, Norelee (2014): Validity of an activity monitor in young people with cerebral palsy gross motor function classification system level I. In: Physiological Measurement 35 (11), S. 2307-2318. DOI: 10.1088/0967-3334/35/11/2307.
- Alghaeed, Z.; Reilly, J. J.; Chastin, S.F.M.; Martin, A.; Davies, G.; Paton, J. Y. (2013): The Influence of Minimum Sitting Period of the ActivPAL™ on the Measurement of Breaks in Sitting in Young Children. In: PLoS ONE 8 (8). DOI: 10.1371/journal.pone.0071854.
- Decker, Ellen de; Craemer, Marieke de; SANTOS-LOZANO, ALEJANDRO; van CAUWENBERGHE, EVELINE; Bourdeaudhuij, Ilse de; Cardon, Greet (2013): Validity of the ActivPAL (TM) and the ActiGraph Monitors in Preschoolers. In: Medicine & Science in Sports & Exercise 45 (10), S. 2002-2011. DOI: 10.1249/MSS.0b013e318292c575.
- Tang, K. T., Richardson, A. M., Maxwell, D., Spence, W. D., & Stansfield, B. W. (2013). Evaluation of an activity monitor for the objective measurement of free-living physical activity in children with cerebral palsy. Archives of physical medicine and rehabilitation, 94(12), 2549-2558.
- Coote, S.; O'Dwyer, C. (2012): Comparative validity of accelerometer-based measures of physical activity for people with multiple sclerosis. In: Archives of Physical Medicine and Rehabilitation 93 (11), S. 2022-2028. DOI: 10.1016/j.apmr.2012.05.010.
- Davies, Gwyneth; Reilly, John I.; McGowan, Amy J.; Dall, Philippa M.; GRANAT, MALCOLM H.; Paton, James Y. (2012): Validity, Practical Utility, and Reliability of the activPAL (TM) in Preschool Children. In: Medicine & Science in Sports & Exercise 44 (4), S. 761-768. DOI: 10.1249/MSS.0b013e31823b1dc7.
- Dowd, K. P.; Harrington, D. M.; Donnelly, A. E. (2012): Criterion and Concurrent Validity of the activPAL™ Professional Physical Activity Monitor in Adolescent Females. In: PLoS ONE 7 (10). DOI: 10.1371/journal.pone.0047633.
- Feito, Y., Bassett, D. R., & Thompson, D. L. (2012). Evaluation of activity monitors in controlled and free-living environments. Medicine & Science in Sports & Exercise, 44(4), 733-741.
- Lyden, K., Kozey-Keadle, S. L., Staudenmayer, J. W., & Freedson, P. S. (2012). Validity of two wearable monitors to estimate breaks from sedentary time. Medicine and science in sports and exercise, 44(11), 2243.
- Ng, Li Whye Cindy; Jenkins, Sue; Hill, Kylie (2012): Accuracy and responsiveness of the stepwatch activity monitor and ActivPAL in patients with COPD when walking with and without a rollator. In: Disability & Rehabilitation 34 (15), S. 1317-1322. DOI: 10.3109/09638288.2011.641666.
- Harrington, D. M.; Welk, G. J.; Donnelly, A. E. (2011): Validation of MET estimates and step measurement using the ActivPAL physical activity logger. In: Journal of Sports Sciences 29 (6), S. 627-633. DOI: 10.1080/02640414.2010.549499.
- Hart, T. L.; McClain, J. J.; Tudor-Locke, C. (2011): Controlled and free-living evaluation of objective measures of sedentary and active behaviors. In: Journal of Physical Activity and Health 8 (6), S. 848-857. DOI: 10.1123/jpah.8.6.848.
- Kozey-Keadle, Sarah; Libertine, Amanda; Lyden, Kate; Staudenmayer, John; FREEDSON, PATTY S. (2011): Validation of wearable monitors for assessing sedentary behavior. In: Medicine & Science in Sports & Exercise 43 (8), S. 1561-1567. DOI: 10.1249/MSS.0b013e31820ce174.
- Skipworth, R.J.E.; Stene, G. B.; Dahele, M.; Hendry, P. O.; Small, A. C.; Blum, D. et al. (2011): Patient-focused endpoints in advanced cancer: Criterion-based validation of accelerometer-based activity monitoring. In: Clinical Nutrition 30 (6), S. 812-821. DOI: 10.1016/j.clnu.2011.05.010.
- Taraldsen, K.; Askim, T.; Sletvold, O.; Einarsen, E. K.; Bjåstad, K. G.; Indredavik, B.; Helbostad, J. L. (2011): Evaluation of a body-worn sensor system to measure physical activity in older people with impaired function. In: Physical therapy 91 (2), S. 277-285. DOI: 10.2522/ptj.20100159.
- Maddocks, M.; Petrou, A.; Skipper, L.; Wilcock, A. (2010): Validity of three accelerometers during treadmill walking and motor vehicle travel. In: British Journal of Sports Medicine 44 (8), S. 606-608. DOI: 10.1136/bjsm.2008.051128.
- Grant, P. M.; Dall, P. M.; Mitchell, S. L.; Granat, M. H. (2008): Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults. In: Journal of Aging and Physical Activity 16 (2), S. 201-214. DOI: 10.1123/japa.16.2.201.
- Ryan, C. G.; Grant, P. M.; Gray, H.; Newton, M.; Granat, M. H. (2008): Measuring postural physical activity in people with chronic low back pain. In: Journal of Back and Musculoskeletal Rehabilitation 21 (1), S. 43-50. DOI: 10.3233/BMR-2008-21106.
- Godfrey, A., Culhane, K. M., & Lyons, G. M. (2007). Comparison of the performance of the activPAL™ Professional physical activity logger to a discrete accelerometer-based activity monitor. Medical engineering & physics, 29(8), 930-934.
- Grant, P. M.; Ryan, C. G.; Tigbe, W. W.; Granat, M. H. (2006): The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. In: British Journal of Sports Medicine 40 (12), S. 992-997. DOI: 10.1136/bjsm.2006.030262.
- Ryan, C. G.; Grant, P. M.; Tigbe, W. W.; Granat, M. H. (2006): The validity and reliability of a novel activity monitor as a measure of walking. In: British Journal of Sports Medicine 40 (9), S. 779-784. DOI: 10.1136/bjsm.2006.027276.
Company: PAL Technologies Ltd, Glasgow, Scotland, UK
Link: https://www.palt.com/pals/
Literature:
- Radtke, T., Rodriguez, M., Braun, J., & Dressel, H. (2021). Criterion validity of the ActiGraph and activPAL in classifying posture and motion in office-based workers: A cross-sectional laboratory study. PloS one, 16(6), e0252659.
- O’Connell, S., Olaighin, G., & Quinlan, L. R. (2017). When a step is not a step! Specificity analysis of five physical activity monitors. PLoS one, 12(1), e0169616.
Company: Axivity Ltd., Newcastle Upon Tyne , United Kingdom
Link: https://axivity.com/product/ax3
Literature:
- Hedayatrad, L., Stewart, T., & Duncan, S. (2020). Concurrent validity of ActiGraph GT3X+ and Axivity AX3 accelerometers for estimating physical activity and sedentary behavior. Journal for the Measurement of Physical Behaviour, 4(1), 1-8.
- Narayanan, A., Stewart, T., & Mackay, L. (2020). A Dual-Accelerometer System for Detecting Human Movement in a Free-living Environment. Medicine and Science in Sports and Exercise, 52(1), 252-258.
- Crowley, P., Skotte, J., Stamatakis, E., Hamer, M., Aadahl, M., Stevens, M. L., ... & Holtermann, A. (2019). Comparison of physical behavior estimates from three different thigh-worn accelerometers brands: a proof-of-concept for the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). International Journal of Behavioral Nutrition and Physical Activity, 16, 1-7.
- White, T., Westgate, K., Hollidge, S., Venables, M., Olivier, P., Wareham, N., & Brage, S. (2019). Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study. International journal of obesity, 43(11), 2333-2342.
- Schmal, H., Holsgaard-Larsen, A., Izadpanah, K., Brønd, J. C., Madsen, C. F., & Lauritsen, J. (2018). Validation of activity tracking procedures in elderly patients after operative treatment of proximal femur fractures. Rehabilitation research and practice, 2018.
- Stewart, T., Narayanan, A., Hedayatrad, L., Neville, J., Mackay, L., & Duncan, S. (2018). A Dual-Accelerometer System for Classifying Physical Activity in Children and Adults. Medicine and science in sports and exercise, 50(12), 2595-2602.
- Feng, Y., Wong, C. K., Janeja, V., Kuber, R., & Mentis, H. M. (2017). Comparison of tri-axial accelerometers step-count accuracy in slow walking conditions. Gait & posture, 53, 11-16.
- Hickey, A., Del Din, S., Rochester, L., & Godfrey, A. (2016). Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis. Physiological measurement, 38(1), N1.
Company: PAL Technologies Ltd, Glasgow, Scotland, UK
Link: https://www.palt.com/pals/
Literature:
- Berendsen, B.A.J.; Hendriks, M.R.C.; Meijer, K.; Plasqui, G.; Schaper, N. C.; Savelberg, H.H.C.M. (2014): Which activity monitor to use? Validity, reproducibility and user friendliness of three activity monitors. In: BMC Public Health 14 (1). DOI: 10.1186/1471-2458-14-749.
- Bourke, Alan K.; Ihlen, Espen A. F.; Helbostad, Jorunn L. (2019): Validation of the activPAL3 in Free-Living and Laboratory Scenarios for the Measurement of Physical Activity, Stepping, and Transitions in Older Adults. In: Journal for the measurement of physical behaviour 2 (2), S. 58-65. DOI: 10.1123/jmpb.2018-0056.
- Coulter, E. H.; Miller, L.; McCorkell, S.; McGuire, C.; Algie, K.; Freeman, J. et al. (2017): Validity of the activPAL3 activity monitor in people moderately affected by Multiple Sclerosis. In: Medical engineering & physics 45, S. 78-82. DOI: 10.1016/j.medengphy.2017.03.008.
- Curran, Maire; Tierney, Audrey; Collins, Louise; Kennedy, Lauren; McDonnell, Ciara; Sheikhi, Ali et al. (2021): Accuracy of the ActivPAL and Fitbit Charge 2 in measuring step count in Cystic Fibrosis. In: Physiotherapy Theory & Practice, S. 1-11. DOI: 10.1080/09593985.2021.1962463.
- Ellingson, L. D.; Schwabacher, I. J.; Kim, Y.; Welk, G. J.; Cook, D. B. (2016): Validity of an Integrative Method for Processing Physical Activity Data. In: Medicine and Science in Sports and Exercise 48 (8), S. 1629-1638. DOI: 10.1249/MSS.0000000000000915.
- EDWARDSON, CHARLOTTE L.; Rowlands, Alex V.; Bunnewell, Sarah; Sanders, James; Esliger, Dale W.; GORELY, TRISH et al. (2016): Accuracy of Posture Allocation Algorithms for Thigh- and Waist-Worn Accelerometers. In: Medicine & Science in Sports & Exercise 48 (6), S. 1085-1090. DOI: 10.1249/MSS.0000000000000865.
- Gilmore, S. J.; Davidson, M.; Hahne, A. J.; McClelland, J. A. (2020): The validity of using activity monitors to detect step count after lumbar fusion surgery. In: Disability and Rehabilitation 42 (6), S. 863-868. DOI: 10.1080/09638288.2018.1509140.
- Giurgiu, Marco; Bussmann, Johannes B. J.; Hill, Holger; Anedda, Bastian; Kronenwett, Marcel; Koch, Elena D. et al. (2020): Validating Accelerometers for the Assessment of Body Position and Sedentary Behavior. In: Journal for the measurement of physical behaviour 3 (3), S. 253-263. DOI: 10.1123/jmpb.2019-0068.
- McCullagh, R., Dillon, C., O'Connell, A. M., Horgan, N. F., & Timmons, S. (2017). Step-count accuracy of 3 motion sensors for older and frail medical inpatients. Archives of physical medicine and rehabilitation, 98(2), 295-302.
- O’Brien, C. M.; Duda, J. L.; Kitas, G. D.; van Veldhuijzen Zanten, J.J.C.S.; Metsios, G. S.; Fenton, S.A.M. (2020): Measurement of sedentary time and physical activity in rheumatoid arthritis: an ActiGraph and activPAL™ validation study. In: Rheumatology International 40 (9), S. 1509-1518. DOI: 10.1007/s00296-020-04608-2.
- Powell, C.; Carson, B. P.; Dowd, K. P.; Donnelly, A. E. (2016): The accuracy of the SenseWear Pro3 and the activPAL3 Micro devices for measurement of energy expenditure. In: Physiological Measurement 37 (10), S. 1715-1727. DOI: 10.1088/0967-3334/37/10/1715.
- Rosenberger, M. E.; Buman, M. P.; Haskell, W. L.; McConnell, M. V.; Carstensen, L. L. (2016): Twenty-four Hours of Sleep, Sedentary Behavior, and Physical Activity with Nine Wearable Devices. In: Medicine and Science in Sports and Exercise 48 (3), S. 457-465. DOI: 10.1249/MSS.0000000000000778.
- Ryde, Gemma C.; Gilson, Nicholas D.; Suppini, Alessandro; Brown, Wendy J. (2012): Validation of a novel, objective measure of occupational sitting. In: Journal of Occupational Health 54 (5), S. 383-386. DOI: 10.1539/joh.12-0091-br.
- Schneller, Mikkel B.; Pedersen, Mogens T.; Gupta, Nidhi; Aadahl, Mette; Holtermann, Andreas (2015): Validation of Five Minimally Obstructive Methods to Estimate Physical Activity Energy Expenditure in Young Adults in Semi-Standardized Settings. In: Sensors (14248220) 15 (3), S. 6133-6151. DOI: 10.3390/s150306133.
- Sellers, C.; Dall, P.; Grant, M.; Stansfield, B. (2016): Agreement of the activPAL3 and activPAL for characterising posture and stepping in adults and children. In: Gait and Posture 48, S. 209-214. DOI: 10.1016/j.gaitpost.2016.05.012.
- Sellers, C.; Dall, P.; Grant, M.; Stansfield, B. (2016): Validity and reliability of the activPAL3 for measuring posture and stepping in adults and young people. In: Gait and Posture 43, S. 42-47. DOI: 10.1016/j.gaitpost.2015.10.020.
- Stansfield, B.; Hajarnis, M.; Sudarshan, R. (2015): Characteristics of very slow stepping in healthy adults and validity of the activPAL3™ activity monitor in detecting these steps. In: Medical Engineering and Physics 37 (1), S. 42-47. DOI: 10.1016/j.medengphy.2014.10.003.
- Ummels, Darcy; Bijnens, Wouter; Aarts, Jos; Meijer, Kenneth; Beurskens, Anna J.; Beekman, Emmylou (2020): The Validation of a Pocket Worn Activity Tracker for Step Count and Physical Behavior in Older Adults during Simulated Activities of Daily Living. In: Gerontology & geriatric medicine 6, 2333721420951732. DOI: 10.1177/2333721420951732.
- van Loo, C.M.T.; Okely, A. D.; Batterham, M.; Hinkley, T.; Ekelund, U.; Brage, S. et al. (2016): Predictive validity of a thigh-worn accelerometer METs algorithm in 5-to 12-year-old children. In: Journal of Physical Activity and Health 13 (6), S78-S83. DOI: 10.1123/jpah.2015-0721.
- van Loo, C. M., Okely, A. D., Batterham, M. J., Hinkley, T., Ekelund, U., Brage, S., ... & Cliff, D. P. (2017). Validation of thigh-based accelerometer estimates of postural allocation in 5–12 year-olds. Journal of Science and Medicine in Sport, 20(3), 273-277.
Company: Cambridge Neurotechnology Ltd, Cambridgeshire, United Kingdom
Literature:
Company: Mini-Mitter Philips Respironics, Inc., Bend, OR, USA
Literature:
Company: Mini-Mitter Philips Respironics, Inc., Bend, OR, USA
Literature:
Company: CamNtech, Cambridge, UK
Literature:
Company: Philips Healthcare, Andover, MA, USA
Literature:
- Alhassan, S., Sirard, J. R., Kurdziel, L. B., Merrigan, S., Greever, C., & Spencer, R. M. (2017). Cross-validation of two accelerometers for assessment of physical activity and sedentary time in preschool children. Pediatric exercise science, 29(2), 268-277.
- Baandrup, L., & Jennum, P. J. (2015). A validation of wrist actigraphy against polysomnography in patients with schizophrenia or bipolar disorder. Neuropsychiatric disease and treatment, 2271-2277.
- Bigué, J. L., Duclos, C., Dumont, M., Paquet, J., Blais, H., Menon, D. K., ... & Gosselin, N. (2020). Validity of actigraphy for nighttime sleep monitoring in hospitalized patients with traumatic injuries. Journal of clinical sleep medicine, 16(2), 185-192.
- Cheung, J., Leary, E. B., Lu, H., Zeitzer, J. M., & Mignot, E. (2020). PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device. PLoS One, 15(9), e0238464.
- Mantua, J., Gravel, N., & Spencer, R. M. (2016). Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors, 16(5), 646.
- Kamper, J. E., Garofano, J., Schwartz, D. J., Silva, M. A., Zeitzer, J., Modarres, M. O., ... & Nakase-Richardson, R. (2016). Concordance of actigraphy with polysomnography in traumatic brain injury neurorehabilitation admissions. The Journal of Head Trauma Rehabilitation, 31(2), 117-125.
- Kahawage, P., Jumabhoy, R., Hamill, K., de Zambotti, M., & Drummond, S. P. (2020). Validity, potential clinical utility, and comparison of consumer and research‐grade activity trackers in insomnia disorder I: In‐lab validation against polysomnography. Journal of sleep research, 29(1), e12931.
- Li, X., Zhang, Y., Jiang, F., & Zhao, H. (2020). A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy. Chronobiology international, 37(7), 1002-1015.
- Marino, M., Li, Y., Rueschman, M. N., Winkelman, J. W., Ellenbogen, J. M., Solet, J. M., ... & Buxton, O. M. (2013). Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep, 36(11), 1747-1755.
- Maskevich, S., Jumabhoy, R., Dao, P. D., Stout, J. C., & Drummond, S. (2017). Pilot validation of ambulatory activity monitors for sleep measurement in Huntington’s disease gene carriers. Journal of Huntington's Disease, 6(3), 249-253.
- Quante, M., Kaplan, E. R., Cailler, M., Rueschman, M., Wang, R., Weng, J., ... & Redline, S. (2018). Actigraphy-based sleep estimation in adolescents and adults: a comparison with polysomnography using two scoring algorithms. Nature and science of sleep, 13-20.
- Rabinovich, R. A., Louvaris, Z., Raste, Y., Langer, D., Van Remoortel, H., Giavedoni, S., ... & Troosters, T. (2013). Validity of physical activity monitors during daily life in patients with COPD. European Respiratory Journal, 42(5), 1205-1215.
- Roberts, D. M., Schade, M. M., Mathew, G. M., Gartenberg, D., & Buxton, O. M. (2020). Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep, 43(7), zsaa045.
- Withrow, D., Roth, T., Koshorek, G., & Roehrs, T. (2019). Relation between ambulatory actigraphy and laboratory polysomnography in insomnia practice and research. Journal of sleep research, 28(4), e12854.
Company: Philips Respironics Inc., Murrysville, PA, USA
Link: https://www.philips.com.au/healthcare/product/HC1044809/actiwatch-2-activity-monitor
Literature:
- Camerota, M., Tully, K. P., Grimes, M., Gueron-Sela, N., & Propper, C. B. (2018). Assessment of infant sleep: how well do multiple methods compare?. Sleep, 41(10), zsy146.
- Chakar, B., Senny, F., Poirrier, A. L., Cambron, L., Fanielle, J., & Poirrier, R. (2017). Validation of midsagittal jaw movements to measure sleep in healthy adults by comparison with actigraphy and polysomnography. Sleep Science, 10(3), 122.
- Chee, N. I., Ghorbani, S., Golkashani, H. A., Leong, R. L., Ong, J. L., & Chee, M. W. (2021). Multi-night validation of a sleep tracking ring in adolescents compared with a research actigraph and polysomnography. Nature and science of sleep, 177-190.
- Chinoy, E. D., Cuellar, J. A., Huwa, K. E., Jameson, J. T., Watson, C. H., Bessman, S. C., ... & Markwald, R. R. (2021). Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep, 44(5), zsaa291.
- Choi, S. J., Kang, M., Sung, M. J., & Joo, E. Y. (2017). Discordant sleep parameters among actigraphy, polysomnography, and perceived sleep in patients with sleep-disordered breathing in comparison with patients with chronic insomnia disorder. Sleep and Breathing, 21, 837-843.
- Cook, J. D., Prairie, M. L., & Plante, D. T. (2018). Ability of the multisensory jawbone UP3 to quantify and classify sleep in patients with suspected central disorders of hypersomnolence: a comparison against polysomnography and actigraphy. Journal of Clinical Sleep Medicine, 14(5), 841-848.
- Danzig, R., Wang, M., Shah, A., & Trotti, L. M. (2020). The wrist is not the brain: Estimation of sleep by clinical and consumer wearable actigraphy devices is impacted by multiple patient‐and device‐specific factors. Journal of sleep research, 29(1), e12926.
- Farabi, S. S., Quinn, L., & Carley, D. W. (2017). Validity of actigraphy in measurement of sleep in young adults with type 1 diabetes. Journal of Clinical Sleep Medicine, 13(5), 669-674.
- Kamper, J. E., Garofano, J., Schwartz, D. J., Silva, M. A., Zeitzer, J., Modarres, M. O., ... & Nakase-Richardson, R. (2016). Concordance of actigraphy with polysomnography in traumatic brain injury neurorehabilitation admissions. The Journal of Head Trauma Rehabilitation, 31(2), 117-125.
- Kang, S. G., Kang, J. M., Ko, K. P., Park, S. C., Mariani, S., & Weng, J. (2017). Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers. Journal of psychosomatic research, 97, 38-44.
- Kapella, M. C., Vispute, S., Zhu, B., & Herdegen, J. J. (2017). Actigraphy scoring for sleep outcome measures in chronic obstructive pulmonary disease. Sleep medicine, 37, 124-129.
- Kemp, C., Pienaar, P. R., Henst, R. H., Roden, L. C., Kolbe-Alexander, T. L., & Rae, D. E. (2020). Assessing the validity and reliability and determining cut-points of the Actiwatch 2 in measuring physical activity. Physiological Measurement, 41(8), 085001.
- Lee, X. K., Chee, N. I., Ong, J. L., Teo, T. B., van Rijn, E., Lo, J. C., & Chee, M. W. (2019). Validation of a consumer sleep wearable device with actigraphy and polysomnography in adolescents across sleep opportunity manipulations. Journal of Clinical Sleep Medicine, 15(9), 1337-1346.
- Lee, P., & Tse, C. Y. (2019). Calibration of wrist-worn ActiWatch 2 and ActiGraph wGT3X for assessment of physical activity in young adults. Gait & posture, 68, 141-149.
- Meltzer, L. J., Walsh, C. M., Traylor, J., & Westin, A. M. (2012). Direct comparison of two new actigraphs and polysomnography in children and adolescents. Sleep, 35(1), 159-166.
- O’Hare, E., Flanagan, D., Penzel, T., Garcia, C., Frohberg, D., & Heneghan, C. (2015). A comparison of radio-frequency biomotion sensors and actigraphy versus polysomnography for the assessment of sleep in normal subjects. Sleep and Breathing, 19, 91-98.
- Pesonen, A. K., & Kuula, L. (2018). The validity of a new consumer-targeted wrist device in sleep measurement: an overnight comparison against polysomnography in children and adolescents. Journal of clinical sleep medicine, 14(4), 585-591.
- Pigeon, W. R., Taylor, M., Bui, A., Oleynk, C., Walsh, P., & Bishop, T. M. (2018). Validation of the sleep-wake scoring of a new wrist-worn sleep monitoring device. Journal of Clinical Sleep Medicine, 14(6), 1057-1062.
- Scott, H., Lovato, N., & Lack, L. (2021). The development and accuracy of the THIM wearable device for estimating sleep and wakefulness. Nature and Science of Sleep, 39-53.
- Shin, M., Swan, P., & Chow, C. M. (2015). The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions. Sleep science, 8(1), 9-15.
- Toon, E., Davey, M. J., Hollis, S. L., Nixon, G. M., Horne, R. S., & Biggs, S. N. (2016). Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents. Journal of Clinical Sleep Medicine, 12(3), 343-350.
- Unno, M., Morisaki, T., Kinoshita, M., Saikusa, M., Iwata, S., Fukaya, S., ... & Iwata, O. (2022). Validation of actigraphy in hospitalised newborn infants using video polysomnography. Journal of Sleep Research, 31(1), e13437.
- van Alphen, H. J., Waninge, A., Minnaert, A. E., Post, W. J., & van der Putten, A. A. (2021). Construct validity of the Actiwatch‐2 for assessing movement in people with profound intellectual and multiple disabilities. Journal of Applied Research in Intellectual Disabilities, 34(1), 99-110.
- Wouw, E. V. D., Evenhuis, H. M., & Echteld, M. A. (2013). Comparison of two types of Actiwatch with polysomnography in older adults with intellectual disability: a pilot study. Journal of intellectual & developmental disability, 38(3), 265-273.
Company: Mini-Mitter Philips Respironics, Inc., Bend, OR, USA
Literature:
Company: Analog Devices, Norwood, MA, USA
Literature:
Company: Analog Devices, Norwood, MA, USA
Literature:
Company: Analog Devices, Norwood, MA, USA
Literature:
Company: Huami North America Inc., Irvine, CA, USA
Literature:
Company: APDM Wearable Technologies Inc., OR, USA
Link: https://apdm.com/wearable-sensors/
Literature:
Company: Aquarius Accessories Ltd, UK
Literature:
Company: Asus Corp., Taipeh, Taiwan
Literature:
B
Company: Huawei Technologies Co. Ltd., Longgang District Shenzhen, China
Link: https://www.huawei.com/de/
Literature:
Company: Huawei Technologies Co. Ltd., Longgang District Shenzhen, China
Link: https://www.huawei.com/de/
Literature:
Company: Basis Science Inc., San Francisco, CA, USA
Literature:
- Kanady, J. C., Ruoff, L., Straus, L. D., Varbel, J., Metzler, T., Richards, A., ... & Neylan, T. C. (2020). Validation of sleep measurement in a multisensor consumer grade wearable device in healthy young adults. Journal of Clinical Sleep Medicine, 16(6), 917-924.
- Boolani, A., Towler, C., LeCours, B., Blank, H., Larue, J., & Fulk, G. (2019). Accuracy of 6 commercially available activity monitors in measuring heart rate, caloric expenditure, steps walked, and distance traveled. Cardiopulmonary Physical Therapy Journal, 30(4), 153-161.
- An, H. S., Jones, G. C., Kang, S. K., Welk, G. J., & Lee, J. M. (2017). How valid are wearable physical activity trackers for measuring steps?. European journal of sport science, 17(3), 360-368.
- Lee, J. M., Kim, Y. W., & Welk, G. J. (2014). TRACK IT: Validity and utility of consumer-based physical activity monitors. ACSM's Health & Fitness Journal, 18(4), 16-21.
Company: Intel Corp., Santa Clara, CA, USA
Link: https://www.intel.de/content/www/de/de/corporate-responsibility/intel-in-california.html
Literature:
- Lee, J. M., Byun, W., Keill, A., Dinkel, D., & Seo, Y. (2018). Comparison of wearable trackers’ ability to estimate sleep. International journal of environmental research and public health, 15(6), 1265.
- Shcherbina, A., Mattsson, C. M., Waggott, D., Salisbury, H., Christle, J. W., Hastie, T., ... & Ashley, E. A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of personalized medicine, 7(2), 3.
- Woodman, J. A., Crouter, S. E., Bassett Jr, D. R., Fitzhugh, E. C., & Boyer, W. R. (2017). Accuracy of Consumer Monitors for Estimating Energy Expenditure and Activity Type. Medicine and science in sports and exercise, 49(2), 371-377.
Company: BioPatch ZephyrLife; Annapolis, Maryland, USA
Literature:
Company: IM Systems Inc., Baltimore, MD, USA
Literature:
Company: IM Systems Inc., Baltimore, MD, USA
Literature:
- Arvidsson, D., Fitch, M., Hudes, M. L., Tudor-Locke, C., & Fleming, S. E. (2011). Accelerometer response to physical activity intensity in normal-weight versus overweight African American children. Journal of Physical Activity and Health, 8(5), 682-692.
- King, G. A., Torres, N., Potter, C., Brooks, T. J., & Coleman, K. J. (2004). Comparison of activity monitors to estimate energy cost of treadmill exercise. Medicine and science in sports and exercise, 36(7), 1244-1251.
Company: BodyMedia Inc., Pittsburgh, PA, USA
Literature:
- Lee, J. M., Kim, Y. W., & Welk, G. J. (2014). TRACK IT: Validity and utility of consumer-based physical activity monitors. ACSM's Health & Fitness Journal, 18(4), 16-21.
- Reeve, M. D., Pumpa, K. L., & Ball, N. (2014). Accuracy of the SenseWear Armband Mini and the BodyMedia FIT in resistance training. Journal of science and medicine in sport, 17(6), 630-634.
Company: Meizu Technology, Zhuhai, Guangdong, China
Literature:
C
Company: Muscle Dynamics Fitness network, Torrance, CA, USA
Literature:
Company: Maastricht Instruments BV, Maastricht, Netherlands
Link: https://maastrichtinstruments.nl/
Literature:
- Berendsen, B. A., Hendriks, M. R., Meijer, K., Plasqui, G., Schaper, N. C., & Savelberg, H. H. (2014). Which activity monitor to use? Validity, reproducibility and user friendliness of three activity monitors. BMC public health, 14, 1-11.
- Annegarn, J., Spruit, M. A., Uszko-Lencer, N. H., Vanbelle, S., Savelberg, H. H., Schols, A. M., ... & Meijer, K. (2011). Objective physical activity assessment in patients with chronic organ failure: a validation study of a new single-unit activity monitor. Archives of physical medicine and rehabilitation, 92(11), 1852-1857.
Company: Citizen Systems Japan Co. Ltd., Tokyo, Japan
Literature:
Company: BodyMedia Inc., Pittsburgh, PA, USA
Literature:
Company: Computer Science and Applications Inc., Shalimar, FL, USA
Literature:
Company: Crossbow Technology Inc., San Jose, CA, USA
Literature:
Company: Crossbow Technology Inc., San Jose, CA, USA
Literature:
D
Company: DirectLife, Philips Lifestyle Inc., Amsterdam, Netherlands
Link:
Literature:
- Dannecker, K. L., Sazonova, N. A., Melanson, E. L., Sazonov, E. S., & Browning, R. C. (2013). A comparison of energy expenditure estimation of several physical activity monitors. Medicine and science in sports and exercise, 45(11), 2105.
- Lee, J. M., Kim, Y. W., & Welk, G. J. (2014). TRACK IT: Validity and utility of consumer-based physical activity monitors. ACSM's Health & Fitness Journal, 18(4), 16-21.
Company: Dunlop Sport, Surrey, United Kingdom
Literature:
Company: McRoberts, Den Haag, Netherlands
Link: https://www.mcroberts.nl/
Literature:
- Andersson, M., Janson, C., & Emtner, M. (2014). Accuracy of three activity monitors in patients with chronic obstructive pulmonary disease: a comparison with video recordings. COPD: Journal of Chronic Obstructive Pulmonary Disease, 11(5), 560-567.
- Busser, H. J., Ott, J., Van Lummel, R. C., Uiterwaal, M., & Blank, R. (1997). Ambulatory monitoring of children's activity. Medical engineering & physics, 19(5), 440-445.
- Kanda, M., Minakata, Y., Matsunaga, K., Sugiura, H., Hirano, T., Koarai, A., ... & Ichinose, M. (2012). Validation of the triaxial accelerometer for the evaluation of physical activity in Japanese patients with COPD. Internal Medicine, 51(4), 369-375.
Company: McRoberts, Den Haag, Netherlands
Link: https://www.mcroberts.nl/
Literature:
- Andersson, M., Janson, C., & Emtner, M. (2014). Accuracy of three activity monitors in patients with chronic obstructive pulmonary disease: a comparison with video recordings. COPD: Journal of Chronic Obstructive Pulmonary Disease, 11(5), 560-567.
- Dijkstra, B., Kamsma, Y. P., & Zijlstra, W. (2010). Detection of gait and postures using a miniaturized triaxial accelerometer-based system: accuracy in patients with mild to moderate Parkinson's disease. Archives of physical medicine and rehabilitation, 91(8), 1272-1277.
- Van Hees, V. T., Van Lummel, R. C., & Westerterp, K. R. (2009). Estimating activity‐related energy expenditure under sedentary conditions using a tri‐axial seismic accelerometer. Obesity, 17(6), 1287-1292.
- Van Remoortel, H., Raste, Y., Louvaris, Z., Giavedoni, S., Burtin, C., Langer, D., ... & PROactive Consortium. (2012). Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PloS one, 7(6), e39198.
Company: McRoberts, Den Haag, Netherlands
Link: https://www.mcroberts.nl/
Literature:
- Fokkenrood, H. J. P., Verhofstad, N., Van Den Houten, M. M. L., Lauret, G. J., Wittens, C., Scheltinga, M. R. M., & Teijink, J. A. W. (2014). Physical activity monitoring in patients with peripheral arterial disease: validation of an activity monitor. European Journal of Vascular and Endovascular Surgery, 48(2), 194-200.
- de Groot, S., & Nieuwenhuizen, M. G. (2013). Validity and reliability of measuring activities, movement intensity and energy expenditure with the DynaPort MoveMonitor. Medical engineering & physics, 35(10), 1499-1505.
- Rabinovich, R. A., Louvaris, Z., Raste, Y., Langer, D., Van Remoortel, H., Giavedoni, S., ... & Troosters, T. (2013). Validity of physical activity monitors during daily life in patients with COPD. European Respiratory Journal, 42(5), 1205-1215.
- Storm, F. A., Heller, B. W., & Mazzà, C. (2015). Step detection and activity recognition accuracy of seven physical activity monitors. PloS one, 10(3), e0118723.
- Taylor, L. M., Klenk, J., Maney, A. J., Kerse, N., MacDonald, B. M., & Maddison, R. (2014). Validation of a body-worn accelerometer to measure activity patterns in octogenarians. Archives of physical medicine and rehabilitation, 95(5), 930-934.
- Valkenet, K., & Veenhof, C. (2019). Validity of three accelerometers to investigate lying, sitting, standing and walking. PloS one, 14(5), e0217545.
Company: McRoberts, Den Haag, Netherlands
Link: https://www.mcroberts.nl/
Literature:
- Dijkstra, B., Zijlstra, W., Scherder, E., & Kamsma, Y. (2008). Detection of walking periods and number of steps in older adults and patients with Parkinson's disease: accuracy of a pedometer and an accelerometry-based method. Age and ageing, 37(4), 436-441.
- Hollewand, A. M., Spijkerman, A. G., Bilo, H. J., Kleefstra, N., Kamsma, Y., & van Hateren, K. J. (2016). Validity of an accelerometer-based activity monitor system for measuring physical activity in frail older adults. Journal of Aging and Physical Activity, 24(4), 555-558.
Company: Dynastream Innovations Inc., Alberta, Canada
Link: https://www.thisisant.com/developer/components/
Literature:
- Karabulut, M., Crouter, S. E., & Bassett, D. R. (2005). Comparison of two waist-mounted and two ankle-mounted electronic pedometers. European journal of applied physiology, 95, 335-343.
- Pomeroy, J., Brage, S., Curtis, J. M., Swan, P. D., Knowler, W. C., & Franks, P. W. (2011). Between-monitor differences in step counts are related to body size: implications for objective physical activity measurement. PLoS One, 6(4), e18942.
- Stone, M. R., Esliger, D. W., & Tremblay, M. S. (2007). Comparative validity assessment of five activity monitors: does being a child matter?. Pediatric Exercise Science, 19(3), 291-309.
- Zhu, W., & Lee, M. (2010). Invariance of wearing location of Omron-BI pedometers: a validation study. Journal of Physical Activity and Health, 7(6), 706-717.
E
Company: Empatica Inc., Milan, Italy
Link: https://www.empatica.com/en-eu/
Literature:
- Regalia, G., Gerboni, G., Migliorini, M., Lai, M., Pham, J., Puri, N., ... & Onorati, F. (2021). Sleep assessment by means of a wrist actigraphy-based algorithm: agreement with polysomnography in an ambulatory study on older adults. Chronobiology International, 38(3), 400-414.
- Cakmak, A. S., Da Poian, G., Willats, A., Haffar, A., Abdulbaki, R., Ko, Y. A., ... & Clifford, G. D. (2020). An unbiased, efficient sleep–wake detection algorithm for a population with sleep disorders: change point decoder. Sleep, 43(8), zsaa011
Company: Impact Sports Technologies, San Diego, CA, USA
Literature:
F
Company: Fatigue Science, Vancouver, BC, Canada
Literature:
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
- Bai, Y., Tompkins, C., Gell, N., Dione, D., Zhang, T., & Byun, W. (2021). Comprehensive comparison of Apple Watch and Fitbit monitors in a free-living setting. PLoS One, 16(5), e0251975.
- Blondeel, A., Demeyer, H., Janssens, W., & Troosters, T. (2020). Accuracy of consumer-based activity trackers as measuring tool and coaching device in patients with COPD and healthy controls. Plos one, 15(8), e0236676.
- Brewer, W., Swanson, B. T., & Ortiz, A. (2017). Validity of Fitbit’s active minutes as compared with a research-grade accelerometer and self-reported measures. BMJ Open Sport—Exercise Medicine, 3(1).
- Chinoy, E. D., Cuellar, J. A., Huwa, K. E., Jameson, J. T., Watson, C. H., Bessman, S. C., ... & Markwald, R. R. (2021). Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep, 44(5), zsaa291.
- Cook, J. D., Eftekari, S. C., Dallmann, E., Sippy, M., & Plante, D. T. (2019). Ability of the Fitbit Alta HR to quantify and classify sleep in patients with suspected central disorders of hypersomnolence: A comparison against polysomnography. Journal of Sleep Research, 28(4), e12789.
- Dorn, D., Gorzelitz, J., Gangnon, R., Bell, D., Koltyn, K., & Cadmus-Bertram, L. (2019). Automatic identification of physical activity type and duration by wearable activity trackers: A validation study. JMIR mHealth and uHealth, 7(5), e13547.
- Hamill, K., Jumabhoy, R., Kahawage, P., de Zambotti, M., Walters, E. M., & Drummond, S. P. (2020). Validity, potential clinical utility and comparison of a consumer activity tracker and a research‐grade activity tracker in insomnia disorder II: Outside the laboratory. Journal of sleep research, 29(1), e12944.
- Kahawage, P., Jumabhoy, R., Hamill, K., de Zambotti, M., & Drummond, S. P. (2020). Validity, potential clinical utility, and comparison of consumer and research‐grade activity trackers in insomnia disorder I: In‐lab validation against polysomnography. Journal of sleep research, 29(1), e12931.
- Kim, K., Park, D. Y., Song, Y. J., Han, S., & Kim, H. J. (2022). Consumer-grade sleep trackers are still not up to par compared to polysomnography. Sleep and Breathing, 26(4), 1573-1582.
- Kubala, A. G., Barone Gibbs, B., Buysse, D. J., Patel, S. R., Hall, M. H., & Kline, C. E. (2020). Field-based measurement of sleep: agreement between six commercial activity monitors and a validated accelerometer. Behavioral sleep medicine, 18(5), 637-652.
- Lee, X. K., Chee, N. I., Ong, J. L., Teo, T. B., van Rijn, E., Lo, J. C., & Chee, M. W. (2019). Validation of a consumer sleep wearable device with actigraphy and polysomnography in adolescents across sleep opportunity manipulations. Journal of Clinical Sleep Medicine, 15(9), 1337-1346.
- Moreno-Pino, F., Porras-Segovia, A., López-Esteban, P., Artés, A., & Baca-García, E. (2019). Validation of Fitbit Charge 2 and Fitbit Alta HR against polysomnography for assessing sleep in adults with obstructive sleep apnea. Journal of Clinical Sleep Medicine, 15(11), 1645-1653.
- Ummels, D., Bijnens, W., Aarts, J., Meijer, K., Beurskens, A. J., & Beekman, E. (2020). The validation of a pocket worn activity tracker for step count and physical behavior in older adults during simulated activities of daily living. Gerontology and geriatric medicine, 6, 2333721420951732.
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
- Bai, Y., Tompkins, C., Gell, N., Dione, D., Zhang, T., & Byun, W. (2021). Comprehensive comparison of Apple Watch and Fitbit monitors in a free-living setting. PLoS One, 16(5), e0251975.
- Boudreaux, B. D., Hebert, E. P., Hollander, D. B., Williams, B. M., Cormier, C. L., Naquin, M. R., ... & Kraemer, R. R. (2018). Validity of wearable activity monitors during cycling and resistance exercise. Med Sci Sports Exerc, 50(3), 624-633.
- Collins, J. E.; Yang, H. Y.; Trentadue, T. P.; Gong, Y.; Losina, E. (2019): Validation of the fitbit charge 2 compared to the actigraph GT3X+ in older adults with knee osteoarthritis in free-living conditions. In: PLoS ONE 14 (1). DOI: 10.1371/journal.pone.0211231.
- Curran, Maire; Tierney, Audrey; Collins, Louise; Kennedy, Lauren; McDonnell, Ciara; Sheikhi, Ali et al. (2021): Accuracy of the ActivPAL and Fitbit Charge 2 in measuring step count in Cystic Fibrosis. In: Physiotherapy Theory & Practice, S. 1-11. DOI: 10.1080/09593985.2021.1962463.
- Degroote, L., Hamerlinck, G., Poels, K., Maher, C., Crombez, G., De Bourdeaudhuij, I., ... & DeSmet, A. (2020). Low-cost consumer-based trackers to measure physical activity and sleep duration among adults in free-living conditions: Validation study. JMIR mHealth and uHealth, 8(5), e16674.
- Dorn, Diana; Gorzelitz, Jessica; Gangnon, Ronald; Bell, David; Koltyn, Kelli; CADMUS-BERTRAM, LISA (2019): Automatic Identification of Physical Activity Type and Duration by Wearable Activity Trackers: A Validation Study. In: JMIR mHealth and uHealth 7 (5). DOI: 10.2196/13547.
- Haghayegh, Shahab; Khoshnevis, Sepideh; Smolensky, Michael H.; Diller, Kenneth R. (2019): Accuracy of PurePulse photoplethysmography technology of Fitbit Charge 2 for assessment of heart rate during sleep. In: Chronobiology International: The Journal of Biological & Medical Rhythm Research 36 (7), S. 927-933. DOI: 10.1080/07420528.2019.1596947.
- Herkert, Cyrille; Kraal, Jos Johannes; van Loon, Eline Maria Agnes; van Hooff, Martijn; Kemps, Hareld Marijn Clemens (2019): Usefulness of Modern Activity Trackers for Monitoring Exercise Behavior in Chronic Cardiac Patients: Validation Study. In: JMIR mHealth and uHealth 7 (12). DOI: 10.2196/15045.
- Keating, X. D.; Liu, J.; Liu, X.; Shangguan, R.; Guan, J.; & Chen, L. (2018): Validity of Fitbit Charge 2 in Controlled College Physical Education Settings. In: ICHPER-SD Journal of Research 9 (2), S. 28-35.
- Lai, Byron; Sasaki, Jeffer E.; Jeng, Brenda; Cederberg, Katie L.; Bamman, Marcas M.; Motl, Robert W. (2020): Accuracy and Precision of Three Consumer-Grade Motion Sensors During Overground and Treadmill Walking in People With Parkinson Disease: Cross-Sectional Comparative Study. In: JMIR rehabilitation and assistive technologies 7 (1), e14059. DOI: 10.2196/14059.
- LaMunion, Samuel R.; Blythe, Andrew L.; Hibbing, Paul R.; Kaplan, Andrew S.; Clendenin, Brandon J.; Crouter, Scott E. (2020): Use of consumer monitors for estimating energy expenditure in youth. In: Applied Physiology, Nutrition & Metabolism 45 (2), S. 161-168. DOI: 10.1139/apnm-2019-0129.
- McVeigh, Joanne A.; Ellis, Jennifer; Ross, Caitlin; Tang, Kim; Wan, Phoebe; Halse, Rhiannon E. et al. (2021): Convergent Validity of the Fitbit Charge 2 to Measure Sedentary Behavior and Physical Activity in Overweight and Obese Adults. In: Journal for the measurement of physical behaviour 4 (1), S. 39-46. DOI: 10.1123/jmpb.2020-0014.
- Mikkelsen, M.-L.K.; Berg-Beckhoff, G.; Frederiksen, P.; Horgan, G.; O'Driscoll, R.; Palmeira, A. L. et al. (2020): Estimating physical activity and sedentary behaviour in a free-living environment: A comparative study between fitbit charge 2 and Actigraph GT3X. In: PLoS ONE 15 (6 June). DOI: 10.1371/journal.pone.0234426.
- Moreno-Pino, Fernando; Porras-Segovia, Alejandro; Lopez-Esteban, Pilar; Artes, Antonio; Baca-Garcia, Enrique (2019): Validation of Fitbit Charge 2 and Fitbit Alta HR Against Polysomnography for Assessing Sleep in Adults With Obstructive Sleep Apnea. In: Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 15 (11), S. 1645-1653. DOI: 10.5664/jcsm.8032.
- O’Driscoll, R.; Turicchi, J.; Hopkins, M.; Gibbons, C.; Larsen, S. C.; Palmeira, A. L. et al. (2020): The validity of two widely used commercial and research-grade activity monitors, during resting, household and activity behaviours. In: Health and Technology 10 (3), S. 637-648. DOI: 10.1007/s12553-019-00392-7.
- Reddy, Ravi Kondama; Pooni, Rubin; Zaharieva, Dessi P.; Senf, Brian; El Youssef, Joseph; Dassau, Eyal et al. (2018): Accuracy of Wrist-Worn Activity Monitors During Common Daily Physical Activities and Types of Structured Exercise: Evaluation Study. In: JMIR mHealth and uHealth 6 (12), e10338. DOI: 10.2196/10338.
- Roberts-Lewis, Sarah F.; White, Claire M.; Ashworth, Mark; Rose, Michael R. (2021): Validity of Fitbit activity monitoring for adults with progressive muscle diseases. In: Disability & Rehabilitation, S. 1-11. DOI: 10.1080/09638288.2021.1995057.
- Silva, Genevieve S.; Yang, Heidi; Collins, Jamie E.; Losina, Elena (2019): Validating Fitbit for Evaluation of Physical Activity in Patients with Knee Osteoarthritis: Do Thresholds Matter? In: ACR open rheumatology 1 (9), S. 585-592. DOI: 10.1002/acr2.11080.
- Tedesco, S.; Sica, M.; Ancillao, A.; Timmons, S.; Barton, J.; O’flynn, B. (2019): Validity evaluation of the fitbit charge2 and the garmin vivosmart HR+ in free-living environments in an older adult cohort. In: JMIR mHealth and uHealth 7 (6). DOI: 10.2196/13084.
- Toth, L. P.; Park, S.; Springer, C. M.; Feyerabend, M. D.; Steeves, J. A.; Bassett, D. R. (2018): Video-Recorded Validation of Wearable Step Counters under Free-living Conditions. In: Medicine and Science in Sports and Exercise 50 (6), S. 1315-1322. DOI: 10.1249/MSS.0000000000001569.
- Vetrovsky, T.; Siranec, M.; Marencakova, J.; Tufano, J. J.; Capek, V.; Bunc, V.; Belohlavek, J. (2019): Validity of six consumer-level activity monitors for measuring steps in patients with chronic heart failure. In: PLoS ONE 14 (9). DOI: 10.1371/journal.pone.0222569.
- Zambotti, Massimiliano de; Goldstone, Aimee; Claudatos, Stephanie; Colrain, Ian M.; Baker, Fiona C. (2018): A validation study of Fitbit Charge 2 (TM) compared with polysomnography in adults. In: Chronobiology International: The Journal of Biological & Medical Rhythm Research 35 (4), S. 465-476. DOI: 10.1080/07420528.2017.1413578.
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
- Carpenter, C., Yang, C. H., & West, D. (2021). A comparison of sedentary behavior as measured by the Fitbit and ActivPAL in college students. International Journal of Environmental Research and Public Health, 18(8), 3914.
- Ehrlich, S. F., Maples, J. M., Barroso, C. S., Brown, K. C., Bassett Jr, D. R., Zite, N. B., & Fortner, K. B. (2021). Using a consumer-based wearable activity tracker for physical activity goal setting and measuring steps in pregnant women with gestational diabetes mellitus: Exploring acceptance and validity. BMC Pregnancy and Childbirth, 21(1), 420.
- Menghini, L., Yuksel, D., Goldstone, A., Baker, F. C., & de Zambotti, M. (2021). Performance of Fitbit Charge 3 against polysomnography in measuring sleep in adolescent boys and girls. Chronobiology international, 38(7), 1010-1022.
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
- Brewer, Wayne; Swanson, Brian T.; Ortiz, Alexis (2017): Validity of Fitbit's active minutes as compared with a research-grade accelerometer and self-reported measures. In: BMJ open sport & exercise medicine 3 (1), e000254. DOI: 10.1136/bmjsem-2017-000254.
-
Dondzila, C. J., Lewis, C., Lopez, J. R., & Parker, T. (2018). Congruent accuracy of wrist-worn activity trackers during controlled and free-living conditions. International journal of exercise science, 11(7), 575-584.
-
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
- Brewer, W., Swanson, B. T., & Ortiz, A. (2017). Validity of Fitbit’s active minutes as compared with a research-grade accelerometer and self-reported measures. BMJ Open Sport—Exercise Medicine, 3(1).
- Castner, J., Mammen, M. J., Jungquist, C. R., Licata, O., Pender, J. J., Wilding, G. E., & Sethi, S. (2019). Validation of fitness tracker for sleep measures in women with asthma. Journal of Asthma, 56(7), 719-730.
- Degroote, L., De Bourdeaudhuij, I., Verloigne, M., Poppe, L., & Crombez, G. (2018). The accuracy of smart devices for measuring physical activity in daily life: validation study. JMIR mHealth and uHealth, 6(12), e10972.
- DeShaw, K. J., Ellingson, L., Bai, Y., Lansing, J., Perez, M., & Welk, G. (2018). Methods for activity monitor validation studies: an example with the Fitbit charge. Journal for the Measurement of Physical Behaviour, 1(3), 130-135.
- Dondzila, C., & Garner, D. (2016). Comparative accuracy of fitness tracking modalities in quantifying energy expenditure. Journal of medical engineering & technology, 40(6), 325-329.
- Hargens, T. A., Deyarmin, K. N., Snyder, K. M., Mihalik, A. G., & Sharpe, L. E. (2017). Comparison of wrist-worn and hip-worn activity monitors under free living conditions. Journal of medical engineering & technology, 41(3), 200-207.
- Hergenroeder, A. L., Gibbs, B. B., Kotlarczyk, M. P., Perera, S., Kowalsky, R. J., & Brach, J. S. (2019). Accuracy and acceptability of commercial-grade physical activity monitors in older adults. Journal of aging and physical activity, 27(2), 222-229.
- Husted, H. M., & Llewellyn, T. L. (2017). The accuracy of pedometers in measuring walking steps on a treadmill in college students. International journal of exercise science, 10(1), 146.
- Madigan, E. A. (2019). Fitness band accuracy in older community dwelling adults. Health Informatics Journal, 25(3), 676-682.
- Smith, J. D., Guerra, G., & Burkholder, B. G. (2020). The validity and accuracy of wrist-worn activity monitors in lower-limb prosthesis users. Disability and rehabilitation, 42(22), 3182-3188.
- Treacy, D., Hassett, L., Schurr, K., Chagpar, S., Paul, S. S., & Sherrington, C. (2017). Validity of different activity monitors to count steps in an inpatient rehabilitation setting. Physical therapy, 97(5), 581-588.
- Wang, L., Liu, T., Wang, Y., Li, Q., Yi, J., & Inoue, Y. (2017). Evaluation on step counting performance of wristband activity monitors in daily living environment. IEEE Access, 5, 13020-13027.
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
- Block, V. J., Zhao, C., Hollenbach, J. A., Olgin, J. E., Marcus, G. M., Pletcher, M. J., ... & Cree, B. A. (2019). Validation of a consumer-grade activity monitor for continuous daily activity monitoring in individuals with multiple sclerosis. Multiple Sclerosis Journal–Experimental, Translational and Clinical, 5(4), 2055217319888660.
- Dorn, D., Gorzelitz, J., Gangnon, R., Bell, D., Koltyn, K., & Cadmus-Bertram, L. (2019). Automatic identification of physical activity type and duration by wearable activity trackers: A validation study. JMIR mHealth and uHealth, 7(5), e13547.
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
- Battenberg, A. K., Donohoe, S., Robertson, N., & Schmalzried, T. P. (2017, June). The accuracy of personal activity monitoring devices. In Seminars in Arthroplasty (Vol. 28, No. 2, pp. 71-75). WB Saunders.
- Prieto-Centurion, V., Bracken, N., Norwick, L., Zaidi, F., Mutso, A. A., Morken, V., ... & Krishnan, J. A. (2016). Can commercially available pedometers be used for physical activity monitoring in patients with COPD following exacerbations?. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation, 3(3), 636.
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
- Costa, P. H. V., de Jesus, T. P. D., Winstein, C., Torriani-Pasin, C., & Polese, J. C. (2020). An investigation into the validity and reliability of mHealth devices for counting steps in chronic stroke survivors. Clinical Rehabilitation, 34(3), 394-403.
- Fulk, G. D., Combs, S. A., Danks, K. A., Nirider, C. D., Raja, B., & Reisman, D. S. (2014). Accuracy of 2 activity monitors in detecting steps in people with stroke and traumatic brain injury. Physical therapy, 94(2), 222-229.
- Gusmer, R. J., Bosch, T. A., Watkins, A. N., Ostrem, J. D., & Dengel, D. R. (2014). Comparison of FitBit® Ultra to ActiGraph™ GT1M for assessment of physical activity in young adults during treadmill walking. The Open Sports Medicine Journal, 8(1).
- Lauritzen, J., Muñoz Macho, A., Sevillano Ramos, J. L., & Civit Balcells, A. (2013). The usefulness of activity trackers in elderly with reduced mobility: a case study. Studies in Health Technology and Informatics. Volume 192: MEDINFO 2013.
- Meltzer, L. J., Hiruma, L. S., Avis, K., Montgomery-Downs, H., & Valentin, J. (2015). Comparison of a commercial accelerometer with polysomnography and actigraphy in children and adolescents. Sleep, 38(8), 1323-1330.
- Noah, J. A., Spierer, D. K., Gu, J., & Bronner, S. (2013). Comparison of steps and energy expenditure assessment in adults of Fitbit Tracker and Ultra to the Actical and indirect calorimetry. Journal of medical engineering & technology, 37(7), 456-462.
- Wong, C. K., Mentis, H. M., & Kuber, R. (2018). The bit doesn’t fit: Evaluation of a commercial activity-tracker at slower walking speeds. Gait & posture, 59, 177-181.
Company: Fitbit Inc., San Francisco, CA, USA
Link: https://www.fitbit.com/global/at/home
Literature:
- Sjöberg, V., Westergren, J., Monnier, A., Martire, R. L., Hagströmer, M., Äng, B. O., & Vixner, L. (2021). Wrist-Worn activity Trackers in laboratory and free-living settings for patients with chronic pain: criterion validity study. JMIR mHealth and uHealth, 9(1), e24806.
- Svensson, T., Chung, U. I., Tokuno, S., Nakamura, M., & Svensson, A. K. (2019). A validation study of a consumer wearable sleep tracker compared to a portable EEG system in naturalistic conditions. Journal of Psychosomatic Research, 126, 109822.
Company: Freestyle Brands, Carrollton, TX, USA
Link:
Literature:
- Crouter, S. E., Schneider, P. L., Karabulut, M., & Bassett, D. R. (2003). Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Medicine and science in sports and exercise, 35(8), 1455-1460.
- Schneider, P. L., Crouter, S. E., Lukajic, O., & Bassett Jr, D. R. (2003). Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Medicine and science in sports and exercise, 35(10), 1779-1784.
- Schneider, P. L., Crouter, S. E., & Bassett, D. R. (2004). Pedometer measures of free-living physical activity: comparison of 13 models. Medicine and science in sports and exercise, 36(2), 331-335.
Company: Estera Corporation, Saitama, Japan
Link:
Literature:
G
Company: Gaehwiler Electronic, Hombrechtikon, Switzerland
Literature:
- Jean–Louis, G., Mendlowicz, M. V., Gillin, J. C., Rapaport, M. H., Kelsoe, J. R., Zizi, F., ... & von Gizycki, H. (2000). Sleep estimation from wrist activity in patients with major depression. Physiology & behavior, 70(1-2), 49-53.
- Jean-Louis, G., von Gizycki, H., Zizi, F., Fookson, J., Spielman, A., Nunes, J., ... & Taub, H. (1996). Determination of sleep and wakefulness with the actigraph data analysis software (ADAS). Sleep, 19(9), 739-743.
Company: Garmin Ltd., Schaffhausen, Switzerland
Link: https://www.garmin.com/de-DE/
Literature:
- Passler, S., Bohrer, J., Blöchinger, L., & Senner, V. (2019). Validity of wrist-worn activity trackers for estimating VO2max and energy expenditure. International journal of environmental research and public health, 16(17), 3037.
- Roos, L., Taube, W., Beeler, N., & Wyss, T. (2017). Validity of sports watches when estimating energy expenditure during running. BMC Sports Science, Medicine and Rehabilitation, 9(1), 1-8.
- Wahl, Y., Düking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in physiology, 8, 725.
Company: Garmin Ltd., Schaffhausen, Switzerland
Link: https://www.garmin.com/de-DE/
Literature:
- Höchsmann, C., Knaier, R., Infanger, D., & Schmidt-Trucksäss, A. (2020). Validity of smartphones and activity trackers to measure steps in a free-living setting over three consecutive days. Physiological measurement, 41(1), 015001.
- Maganja, S. A., Clarke, D. C., Lear, S. A., & Mackey, D. C. (2020). Formative evaluation of consumer-grade activity monitors worn by older adults: test-retest reliability and criterion validity of step counts. JMIR Formative Research, 4(8), e16537.
- Madigan, E. A. (2019). Fitness band accuracy in older community dwelling adults. Health Informatics Journal, 25(3), 676-682.
- Höchsmann, C., Knaier, R., Eymann, J., Hintermann, J., Infanger, D., & Schmidt‐Trucksäss, A. (2018). Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. Scandinavian journal of medicine & science in sports, 28(7), 1818-1827.
- Leth, S., Hansen, J., Nielsen, O. W., & Dinesen, B. (2017). Evaluation of commercial self-monitoring devices for clinical purposes: results from the future patient trial, phase I. Sensors, 17(1), 211.
Company: Garmin Ltd., Schaffhausen, Switzerland
Link: https://www.garmin.com/de-DE/
Literature:
- De Ridder, R., & De Blaiser, C. (2019). Activity trackers are not valid for step count registration when walking with crutches. Gait & posture, 70, 30-32.
- Vetrovsky, T., Siranec, M., Marencakova, J., Tufano, J. J., Capek, V., Bunc, V., & Belohlavek, J. (2019). Validity of six consumer-level activity monitors for measuring steps in patients with chronic heart failure. PLoS One, 14(9), e0222569.
Company: Garmin Ltd., Schaffhausen, Switzerland
Link: https://www.garmin.com/de-DE/
Literature:
- Lee, J. M., Byun, W., Keill, A., Dinkel, D., & Seo, Y. (2018). Comparison of wearable trackers’ ability to estimate sleep. International journal of environmental research and public health, 15(6), 1265.
- Rozanski, G. M., Aqui, A., Sivakumaran, S., & Mansfield, A. (2018). Consumer wearable devices for activity monitoring among individuals after a stroke: a prospective comparison. JMIR cardio, 2(1), e8199.
- Fokkema, T., Kooiman, T. J., Krijnen, W. P., Van der Schans, C. P., & De Groot, M. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc, 49(4), 793-800.
- Wahl, Y., Düking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in physiology, 8, 725.
Company: Garmin Ltd., Schaffhausen, Switzerland
Link: https://www.garmin.com/de-DE/
Literature:
- Chinoy, E. D., Cuellar, J. A., Huwa, K. E., Jameson, J. T., Watson, C. H., Bessman, S. C., ... & Markwald, R. R. (2021). Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep, 44(5), zsaa291.
- Lai, B., Sasaki, J. E., Jeng, B., Cederberg, K. L., Bamman, M. M., & Motl, R. W. (2020). Accuracy and precision of three consumer-grade motion sensors during overground and treadmill walking in people with Parkinson disease: cross-sectional comparative study. JMIR rehabilitation and assistive technologies, 7(1), e14059.
Company: Garmin Ltd., Schaffhausen, Switzerland
Link: https://www.garmin.com/de-DE/
Literature:
- Montes, J., Tandy, R., Young, J., Lee, S. P., & Navalta, J. W. (2020). Step count reliability and validity of five wearable technology devices while walking and jogging in both a free motion setting and on a treadmill. International journal of exercise science, 13(7), 410.
- Svarre, F. R., Jensen, M. M., Nielsen, J., & Villumsen, M. (2020). The validity of activity trackers is affected by walking speed: the criterion validity of Garmin Vivosmart® HR and StepWatch™ 3 for measuring steps at various walking speeds under controlled conditions. PeerJ, 8, e9381.
- Dorn, D., Gorzelitz, J., Gangnon, R., Bell, D., Koltyn, K., & Cadmus-Bertram, L. (2019). Automatic identification of physical activity type and duration by wearable activity trackers: A validation study. JMIR mHealth and uHealth, 7(5), e13547.
- Montes, J., Tandy, R., Young, J., Lee, S. P., & Navalta, J. (2019). A comparison of multiple wearable technology devices heart rate and step count measurements during free motion and treadmill based measurements. International Journal of Kinesiology and Sports Science, 7(2), 30-39.
- Passler, S., Bohrer, J., Blöchinger, L., & Senner, V. (2019). Validity of wrist-worn activity trackers for estimating VO2max and energy expenditure. International journal of environmental research and public health, 16(17), 3037.
- Tedesco, S., Sica, M., Ancillao, A., Timmons, S., Barton, J., & O'Flynn, B. (2019). Validity evaluation of the Fitbit Charge2 and the Garmin vivosmart HR+ in free-living environments in an older adult cohort. JMIR mHealth and uHealth, 7(6), e13084.
- Tedesco, S., Sica, M., Ancillao, A., Timmons, S., Barton, J., & O’Flynn, B. (2019). Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PloS one, 14(5), e0216891.
- Boudreaux, B. D., Hebert, E. P., Hollander, D. B., Williams, B. M., Cormier, C. L., Naquin, M. R., ... & Kraemer, R. R. (2018). Validity of wearable activity monitors during cycling and resistance exercise. Med Sci Sports Exerc, 50(3), 624-633.
- Lamont, R. M., Daniel, H. L., Payne, C. L., & Brauer, S. G. (2018). Accuracy of wearable physical activity trackers in people with Parkinson’s disease. Gait & posture, 63, 104-108.
- Navalta, J. W., Montes, J., Bodell, N. G., Aguilar, C. D., Lujan, A., Guzman, G., ... & DeBeliso, M. (2018). Wearable device validity in determining step count during hiking and trail running. Journal for the Measurement of Physical Behaviour, 1(2), 86-93.
- Reddy, R. K., Pooni, R., Zaharieva, D. P., Senf, B., El Youssef, J., Dassau, E., ... & Jacobs, P. G. (2018). Accuracy of wrist-worn activity monitors during common daily physical activities and types of structured exercise: evaluation study. JMIR mHealth and uHealth, 6(12), e10338.
- Sears, T., Alvalos, E., Lawson, S., McAlister, I., Eschbach, L. C., & Bunn, J. (2017). Wrist-worn physical activity trackers tend to underestimate steps during walking. International Journal of Exercise Science, 10(5), 764-773.
Company: Garmin Ltd., Schaffhausen, Switzerland
Link: https://www.garmin.com/de-DE/
Literature:
- Martinato, M., Lorenzoni, G., Zanchi, T., Bergamin, A., Buratin, A., Azzolina, D., & Gregori, D. (2021). Usability and accuracy of a smartwatch for the assessment of physical activity in the elderly population: observational study. JMIR mHealth and uHealth, 9(5), e20966.
- Wahl, Y., Düking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in physiology, 8, 725.
Company: ActivInsights Ltd., Cambridgeshire, UK
Link: https://activinsights.com/
Literature:
- Jenkins, C. A., Tiley, L. C., Lay, I., Hartmann, J. A., Chan, J. K., & Nicholas, C. L. (2022). Comparing GENEActiv against Actiwatch-2 over seven nights using a common sleep scoring algorithm and device-specific wake thresholds. Behavioral Sleep Medicine, 20(4), 369-379.
- Mahadevan, N., Christakis, Y., Di, J., Bruno, J., Zhang, Y., Dorsey, E. R., ... & Patel, S. (2021). Development of digital measures for nighttime scratch and sleep using wrist-worn wearable devices. NPJ digital medicine, 4(1), 42.
- Fridriksdottir, E., & Bonomi, A. G. (2020). Accelerometer-based human activity recognition for patient monitoring using a deep neural network. Sensors, 20(22), 6424.
- Te Lindert, B. H., van der Meijden, W. P., Wassing, R., Lakbila-Kamal, O., Wei, Y., Van Someren, E. J., & Ramautar, J. R. (2020). Optimizing actigraphic estimates of polysomnographic sleep features in insomnia disorder. Sleep, 43(11), zsaa090.
- Eyre, E. L., Tallis, J., Wilson, S., Wilde, L., Akhurst, L., Wanderleys, R., & Duncan, M. J. (2019). Research Tracker 6 accelerometer calibration and validation in comparison to GENEActiv, ActiGraph, and gas analysis in young adults. Journal for the Measurement of Physical Behaviour, 2(3), 176-187.
- Hewitt, L., Stanley, R. M., Cliff, D., & Okely, A. D. (2019). Objective measurement of tummy time in infants (0-6 months): a validation study. PLoS One, 14(2), e0210977.
- Hurter, L., Rowlands, A. V., Fairclough, S. J., Gibbon, K. C., Knowles, Z. R., Porcellato, L. A., ... & Boddy, L. M. (2019). Validating the Sedentary Sphere method in children: Does wrist or accelerometer brand matter?. Journal of Sports Sciences, 37(16), 1910-1918.
- Siddall, A. G., Powell, S. D., Needham‐Beck, S. C., Edwards, V. C., Thompson, J. E., Kefyalew, S. S., ... & Myers, S. D. (2019). Validity of energy expenditure estimation methods during 10 days of military training. Scandinavian journal of medicine & science in sports, 29(9), 1313-1321.
- Dutta, A., Ma, O., Toledo, M., Pregonero, A. F., Ainsworth, B. E., Buman, M. P., & Bliss, D. W. (2018). Identifying free-living physical activities using lab-based models with wearable accelerometers. Sensors, 18(11), 3893.
- Huberty, J. L., Matthews, J. L., Toledo, M., Smith, L., Jarrett, C. L., Duncan, B., & Buman, M. P. (2018). Vinyasa flow: Metabolic cost and validation of hip-and wrist-worn wearable sensors. Journal for the Measurement of Physical Behaviour, 1(4), 174-180.
- Hurter, L., Fairclough, S. J., Knowles, Z. R., Porcellato, L. A., Cooper-Ryan, A. M., & Boddy, L. M. (2018). Establishing raw acceleration thresholds to classify sedentary and stationary behaviour in children. Children, 5(12), 172.
- van Hees, V. T., Sabia, S., Jones, S. E., Wood, A. R., Anderson, K. N., Kivimäki, M., ... & Weedon, M. N. (2018). Estimating sleep parameters using an accelerometer without sleep diary. Scientific reports, 8(1), 12975.
- Sirichana, W., Dolezal, B. A., Neufeld, E. V., Wang, X., & Cooper, C. B. (2017). Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities. Journal of Science and Medicine in Sport, 20(8), 761-765.
- Edwardson, C. L., Rowlands, A. V., Bunnewell, S., Sanders, J. P., Esliger, D., Gorely, T., ... & Yates, T. E. (2016). Accuracy of posture allocation algorithms for thigh-and waist-worn accelerometers.
- Montoye, A. H., Pivarnik, J. M., Mudd, L. M., Biswas, S., & Pfeiffer, K. A. (2016). Validation and comparison of accelerometers worn on the hip, thigh, and wrists for measuring physical activity and sedentary behavior. AIMS public health, 3(2), 298.
- Montoye, A. H., Pivarnik, J. M., Mudd, L. M., Biswas, S., & Pfeiffer, K. A. (2016). Wrist-independent energy expenditure prediction models from raw accelerometer data. Physiological measurement, 37(10), 1770.
- Pavey, T. G., Gomersall, S. R., Clark, B. K., & Brown, W. J. (2016). The validity of the GENEActiv wrist-worn accelerometer for measuring adult sedentary time in free living. Journal of science and medicine in sport, 19(5), 395-399.
- Rosenberger, M. E., Buman, M. P., Haskell, W. L., McConnell, M. V., & Carstensen, L. L. (2016). 24 hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Medicine and science in sports and exercise, 48(3), 457.
- Rowlands, A. V., Yates, T., Olds, T. S., Davies, M., Khunti, K., & Edwardson, C. L. (2016). Sedentary sphere: wrist-worn accelerometer-brand independent posture classification. Med Sci Sports Exerc, 48(4), 748-54.
- Nightingale, T. E., Walhin, J. P., Thompson, D., & Bilzon, J. L. J. (2015). Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users. PloS one, 10(5), e0126086.
- Hildebrand, M. V. H. V., VT, V. H., Hansen, B. H., & Ekelund, U. L. F. (2014). Age group comparability of raw accelerometer output from wrist-and hip-worn monitors. Medicine and science in sports and exercise, 46(9), 1816-1824.
- Rowlands, A. V., Rennie, K., Kozarski, R., Stanley, R. M., Eston, R. G., Parfitt, G. C., & Olds, T. S. (2014). Children’s physical activity assessed with wrist-and hip-worn accelerometers.
- Phillips, L. R., Parfitt, G., & Rowlands, A. V. (2013). Calibration of the GENEA accelerometer for assessment of physical activity intensity in children. Journal of science and medicine in sport, 16(2), 124-128.
- Te Lindert, B. H., & Van Someren, E. J. (2013). Sleep estimates using microelectromechanical systems (MEMS). Sleep, 36(5), 781-789.
- van Hees, V. T., Renström, F., Wright, A., Gradmark, A., Catt, M., Chen, K. Y., ... & Franks, P. W. (2011). Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PloS one, 6(7), e22922.
Company: Decathlon SA, Villeneuve d´Ascq France
Literature:
Company: Decathlon SA, Villeneuve d´Ascq France
Literature:
- Compagnat, M., Mandigout, S., Batcho, C. S., Vuillerme, N., Salle, J. Y., David, R., & Daviet, J. C. (2020). Validity of wearable actimeter computation of total energy expenditure during walking in post-stroke individuals. Annals of physical and rehabilitation medicine, 63(3), 209-215.
- Mandigout, S., Lacroix, J., Ferry, B., Vuillerme, N., Compagnat, M., & Daviet, J. C. (2017). Can energy expenditure be accurately assessed using accelerometry-based wearable motion detectors for physical activity monitoring in post-stroke patients in the subacute phase?. European journal of preventive cardiology, 24(18), 2009-2016.
Company: Goyourlife Inc., Taipeh, Taiwan
Link: https://www.goyourlife.com/en/golifecarex/
Literature:
Company: Google LLC, Mountain View, CA, USA
Literature:
H
Company: Vital Connect, CA, USA
Link: https://vitalconnect.com/
Literature:
- Uchimura, K. D., Adamson, T. L., Karaniuk, K. M., Spano, M. L., & La Belle, J. (2019). Feasibility of commercially marketed health devices for potential clinical application. Critical Reviews™ in Biomedical Engineering, 47(2).
- Koenders, N., Seeger, J. P., van der Giessen, T., van den Hurk, T. J., Smits, I. G., Tankink, A. M., ... & Hoogeboom, T. J. (2018). Validation of a wireless patch sensor to monitor mobility tested in both an experimental and a hospital setup: A cross-sectional study. Plos one, 13(10), e0206304
I
Company: iHealth Labs Inc, Mountain View, CA, USA
Link: https://helpcenter.ihealthlabs.eu/hc/de
Literature:
- Ehrler, F., Weber, C., & Lovis, C. (2016). Influence of pedometer position on pedometer accuracy at various walking speeds: a comparative study. Journal of medical Internet research, 18(10), e268.
- El-Amrawy, F., & Nounou, M. I. (2015). Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial?. Healthcare informatics research, 21(4), 315-320.
Company: Andon Health Co., Ltd., Tianjin, China
Link: https://helpcenter.ihealthlabs.eu/hc/de
Literature:
Company: Teltronic AG, Biberist, Switzerland
Literature:
Company: Boje Sport, Leipzig, Germany
Literature:
J
Company: GN Audio, Copenhagen, Denmark
Literature:
Company: Jawbone Health Hub Inc., San Francisco, California, USA
Link: https://www.jawbonehealth.com/
Literature:
Company: Jawbone Health Hub Inc., San Francisco, California, USA
Link: https://www.jawbonehealth.com/
Literature:
- Gilmore, S. J., Davidson, M., Hahne, A. J., & McClelland, J. A. (2020). The validity of using activity monitors to detect step count after lumbar fusion surgery. Disability and Rehabilitation, 42(6), 863-868.
- Kendall, B., Bellovary, B., & Gothe, N. P. (2019). Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test. Journal of sports sciences, 37(1), 42-49.
- Morris, C. E., Wessel, P. A., Tinius, R. A., Schafer, M. A., & Maples, J. M. (2019). Validity of activity trackers in estimating energy expenditure during high-intensity functional training. Research Quarterly for Exercise and Sport, 90(3), 377-384.
- Wendel, N., Macpherson, C. E., Webber, K., Hendron, K., DeAngelis, T., Colon-Semenza, C., & Ellis, T. (2018). Accuracy of activity trackers in Parkinson disease: should we prescribe them?. Physical therapy, 98(8), 705-714.
- Fokkema, T., Kooiman, T. J., Krijnen, W. P., Van der Schans, C. P., & De Groot, M. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc, 49(4), 793-800.
- Gruwez, A., Libert, W., Ameye, L., & Bruyneel, M. (2017). Reliability of commercially available sleep and activity trackers with manual switch-to-sleep mode activation in free-living healthy individuals. International journal of medical informatics, 102, 87-92.
- Balto, J. M., Kinnett-Hopkins, D. L., & Motl, R. W. (2016). Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis. Multiple Sclerosis Journal–Experimental, Translational and Clinical, 2, 2055217316634754.
Company: Jawbone Health Hub Inc., San Francisco, California, USA
Link: https://www.jawbonehealth.com/
Literature:
- Maganja, S. A., Clarke, D. C., Lear, S. A., & Mackey, D. C. (2020). Formative evaluation of consumer-grade activity monitors worn by older adults: test-retest reliability and criterion validity of step counts. JMIR Formative Research, 4(8), e16537.
- Gaz, D. V., Rieck, T. M., Peterson, N. W., Ferguson, J. A., Schroeder, D. R., Dunfee, H. A., ... & Hagen, P. T. (2018). Determining the validity and accuracy of multiple activity-tracking devices in controlled and free-walking conditions. American Journal of Health Promotion, 32(8), 1671-1678.
- Wendel, N., Macpherson, C. E., Webber, K., Hendron, K., DeAngelis, T., Colon-Semenza, C., & Ellis, T. (2018). Accuracy of activity trackers in Parkinson disease: should we prescribe them?. Physical therapy, 98(8), 705-714.
- Maskevich, S., Jumabhoy, R., Dao, P. D., Stout, J. C., & Drummond, S. (2017). Pilot validation of ambulatory activity monitors for sleep measurement in Huntington’s disease gene carriers. Journal of Huntington's Disease, 6(3), 249-253.
- Balto, J. M., Kinnett-Hopkins, D. L., & Motl, R. W. (2016). Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis. Multiple Sclerosis Journal–Experimental, Translational and Clinical, 2, 2055217316634754.
Company: Jawbone Health Hub Inc., San Francisco, California, USA
Link: https://www.jawbonehealth.com/
Literature:
- Murakami, H., Kawakami, R., Nakae, S., Yamada, Y., Nakata, Y., Ohkawara, K., ... & Miyachi, M. (2019). Accuracy of 12 wearable devices for estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method: validation study. JMIR mHealth and uHealth, 7(8), e13938.
- Edwardson, C. L., Davies, M., Khunti, K., Yates, T., & Rowlands, A. V. (2018). Steps per day measured by consumer activity trackers worn at the non-dominant and dominant wrist relative to a waist-worn pedometer. Journal for the Measurement of Physical Behaviour, 1(1), 2-8.
- Ummels, D., Beekman, E., Theunissen, K., Braun, S., & Beurskens, A. J. (2018). Counting steps in activities of daily living in people with a chronic disease using nine commercially available fitness trackers: Cross-sectional validity study. JMIR mHealth and uHealth, 6(4), e8524.
- An, H. S., Jones, G. C., Kang, S. K., Welk, G. J., & Lee, J. M. (2017). How valid are wearable physical activity trackers for measuring steps?. European journal of sport science, 17(3), 360-368.
- Chow, J. J., Thom, J. M., Wewege, M. A., Ward, R. E., & Parmenter, B. J. (2017). Accuracy of step count measured by physical activity monitors: The effect of gait speed and anatomical placement site. Gait & posture, 57, 199-203.
- Chowdhury, E. A., Western, M. J., Nightingale, T. E., Peacock, O. J., & Thompson, D. (2017). Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PloS one, 12(2), e0171720.
- Bai, Y., Welk, G. J., Nam, Y. H., Lee, J. A., Lee, J. M., Kim, Y., ... & Dixon, P. M. (2016). Comparison of consumer and research monitors under semistructured settings. Medicine & Science in Sports & Exercise, 48(1), 151-158.
- Nelson, M. B., Kaminsky, L. A., Dickin, D. C., & Montoye, A. H. (2016). Validity of consumer-based physical activity monitors for specific activity types. Medicine and science in sports and exercise, 48(8), 1619-1628.
- Mudge, S., Stott, N. S., & Walt, S. E. (2007). Criterion validity of the StepWatch Activity Monitor as a measure of walking activity in patients after stroke. Archives of physical medicine and rehabilitation, 88(12), 1710-1715.
Company: Jawbone Health Hub Inc., San Francisco, California, USA
Link: https://www.jawbonehealth.com/
Literature:
- Ellender, C. M., Zahir, S. F., Meaklim, H., Joyce, R., Cunnington, D., & Swieca, J. (2021). Prospective cohort study to evaluate the accuracy of sleep measurement by consumer-grade smart devices compared with polysomnography in a sleep disorders population. BMJ open, 11(11).
Hao, Y., Ma, X. K., Zhu, Z., & Cao, Z. B. (2021). Validity of wrist-wearable activity devices for estimating physical activity in adolescents: Comparative study. JMIR mHealth and uHealth, 9(1), e18320. - Danzig, R., Wang, M., Shah, A., & Trotti, L. M. (2020). The wrist is not the brain: Estimation of sleep by clinical and consumer wearable actigraphy devices is impacted by multiple patient‐and device‐specific factors. Journal of sleep research, 29(1), e12926.
- Kubala, A. G., Barone Gibbs, B., Buysse, D. J., Patel, S. R., Hall, M. H., & Kline, C. E. (2020). Field-based measurement of sleep: agreement between six commercial activity monitors and a validated accelerometer. Behavioral sleep medicine, 18(5), 637-652.
- Cook, J. D., Prairie, M. L., & Plante, D. T. (2018). Ability of the multisensory jawbone UP3 to quantify and classify sleep in patients with suspected central disorders of hypersomnolence: a comparison against polysomnography and actigraphy. Journal of Clinical Sleep Medicine, 14(5), 841-848.
- Madigan, E. A. (2019). Fitness band accuracy in older community dwelling adults. Health Informatics Journal, 25(3), 676-682.
- Uchimura, K. D., Adamson, T. L., Karaniuk, K. M., Spano, M. L., & La Belle, J. (2019). Feasibility of commercially marketed health devices for potential clinical application. Critical Reviews™ in Biomedical Engineering, 47(2).
- Lee, J. M., Byun, W., Keill, A., Dinkel, D., & Seo, Y. (2018). Comparison of wearable trackers’ ability to estimate sleep. International journal of environmental research and public health, 15(6), 1265.
- Xie, J., Wen, D., Liang, L., Jia, Y., Gao, L., & Lei, J. (2018). Evaluating the validity of current mainstream wearable devices in fitness tracking under various physical activities: comparative study. JMIR mHealth and uHealth, 6(4), e9754.
- Sears, T., Alvalos, E., Lawson, S., McAlister, I., Eschbach, L. C., & Bunn, J. (2017). Wrist-worn physical activity trackers tend to underestimate steps during walking. International Journal of Exercise Science, 10(5), 764-773.
K
Company: Suzuken Co. Ltd., Nagoya, Japan
Literature:
Company: Suzuken Co. Ltd., Nagoya, Japan
Literature:
- Tanaka, C., Hikihara, Y., Inoue, S., & Tanaka, S. (2019). The choice of pedometer impacts on daily step counts in primary school children under free-living conditions. International journal of environmental research and public health, 16(22), 4375.
- Dondzila, C. J., Swartz, A. M., Miller, N. E., Lenz, E. K., & Strath, S. J. (2012). Accuracy of uploadable pedometers in laboratory, overground, and free-living conditions in young and older adults. International Journal of Behavioral Nutrition and Physical Activity, 9, 1-7.
- Van Remoortel, H., Raste, Y., Louvaris, Z., Giavedoni, S., Burtin, C., Langer, D., ... & PROactive Consortium. (2012). Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PloS one, 7(6), e39198.
- Kumahara, H., Tanaka, H., & Schutz, Y. (2009). Are pedometers adequate instruments for assessing energy expenditure?. European journal of clinical nutrition, 63(12), 1425-1432.
- Nakae, S., Oshima, Y., & Ishii, K. (2008). Accuracy of spring-levered and piezo-electric pedometers in primary school Japanese children. Journal of physiological anthropology, 27(5), 233-239.
- Ayabe, M., Aoki, J., Ishii, K., Takayama, K., & Tanaka, H. (2008). Pedometer accuracy during stair climbing and bench stepping exercises. Journal of sports science & medicine, 7(2), 249.
- Kumahara, H., Schutz, Y., Ayabe, M., Yoshioka, M., Yoshitake, Y., Shindo, M., ... & Tanaka, H. (2004). The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. British Journal of Nutrition, 91(2), 235-243.
- Schneider, P. L., Crouter, S. E., & Bassett, D. R. (2004). Pedometer measures of free-living physical activity: comparison of 13 models. Medicine and science in sports and exercise, 36(2), 331-335.
- Crouter, S. E., Schneider, P. L., Karabulut, M., & Bassett, D. R. (2003). Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Medicine and science in sports and exercise, 35(8), 1455-1460.
- Schneider, P. L., Crouter, S. E., Lukajic, O., & Bassett Jr, D. R. (2003). Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Medicine and science in sports and exercise, 35(10), 1779-1784.
- Rafamantanantsoa, H. H., Ebine, N., Yoshioka, M., Higuchi, H., Yoshitake, Y., Tanaka, H., ... & Jones, P. J. H. (2002). Validation of three alternative methods to measure total energy expenditure against the doubly labeled water method for older Japanese men. Journal of nutritional science and vitaminology, 48(6), 517-523.
Company: Suzuken Co. Ltd., Nagoya, Japan
Literature:
- Murakami, H., Kawakami, R., Nakae, S., Yamada, Y., Nakata, Y., Ohkawara, K., ... & Miyachi, M. (2019). Accuracy of 12 wearable devices for estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method: validation study. JMIR mHealth and uHealth, 7(8), e13938.
- Yamada, Y., Hashii-Arishima, Y., Yokoyama, K., Itoi, A., Adachi, T., & Kimura, M. (2018). Validity of a triaxial accelerometer and simplified physical activity record in older adults aged 64–96 years: A doubly labeled water study. European journal of applied physiology, 118, 2133-2146.
- Park, J., Ishikawa-Takata, K., Tanaka, S., Bessyo, K., Tanaka, S., & Kimura, T. (2017). Accuracy of estimating step counts and intensity using accelerometers in older people with or without assistive devices. Journal of aging and physical activity, 25(1), 41-50.
- Dondzila, C. J., Swartz, A. M., Miller, N. E., Lenz, E. K., & Strath, S. J. (2012). Accuracy of uploadable pedometers in laboratory, overground, and free-living conditions in young and older adults. International Journal of Behavioral Nutrition and Physical Activity, 9, 1-7.
- Arvidsson, D., Fitch, M., Hudes, M. L., Tudor-Locke, C., & Fleming, S. E. (2011). Accelerometer response to physical activity intensity in normal-weight versus overweight African American children. Journal of Physical Activity and Health, 8(5), 682-692.
- Park, J., Ishikawa-Takata, K., Tanaka, S., Mekata, Y., & Tabata, I. (2011). Effects of walking speed and step frequency on estimation of physical activity using accelerometers. Journal of physiological anthropology, 30(3), 119-127.
- Swartz, A. M., Strath, S. J., Miller, N. E., Grimm, E. K., Ewalt, L. A., Loy, M. S., & Gennuso, K. P. (2009). Validity of physical activity monitors in assessing energy expenditure in normal, overweight, and obese adults. The open sports sciences journal, 2, 58.
- Abel, M. G., Hannon, J. C., Sell, K., Lillie, T., Conlin, G., & Anderson, D. (2008). Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. Applied Physiology, Nutrition, and Metabolism, 33(6), 1155-1164.
L
Company: Bellabeat, San Francisco, CA, USA
Literature:
- Montes, J., Tandy, R., Young, J., Lee, S. P., & Navalta, J. W. (2020). Step count reliability and validity of five wearable technology devices while walking and jogging in both a free motion setting and on a treadmill. International journal of exercise science, 13(7), 410.
- Montes, J., Tandy, R., Young, J., Lee, S. P., & Navalta, J. (2019). A comparison of multiple wearable technology devices heart rate and step count measurements during free motion and treadmill based measurements. International Journal of Kinesiology and Sports Science, 7(2), 30-39.
- Navalta, J. W., Montes, J., Bodell, N. G., Aguilar, C. D., Lujan, A., Guzman, G., ... & DeBeliso, M. (2018). Wearable device validity in determining step count during hiking and trail running. Journal for the Measurement of Physical Behaviour, 1(2), 86-93.
Company: Suzuken, Co., Ltd., Nagoya, Japan
Literature:
- Rabinovich, R. A., Louvaris, Z., Raste, Y., Langer, D., Van Remoortel, H., Giavedoni, S., ... & Troosters, T. (2013). Validity of physical activity monitors during daily life in patients with COPD. European Respiratory Journal, 42(5), 1205-1215.
- Enomoto, M., Endo, T., Suenaga, K., Miura, N., Nakano, Y., Kohtoh, S., ... & Mishima, K. (2009). Newly developed waist actigraphy and its sleep/wake scoring algorithm. Sleep and Biological Rhythms, 7, 17-22.
Company: A&D Medical, Toronto, ON, Canada
Literature:
Company: ST-Microelectronics, Geneva, Switzerland
Literature:
Company: Lumo Bodytech Inc., Mountain View, CA, USA
Literature:
- Ummels, D., Beekman, E., Theunissen, K., Braun, S., & Beurskens, A. J. (2018). Counting steps in activities of daily living in people with a chronic disease using nine commercially available fitness trackers: Cross-sectional validity study. JMIR mHealth and uHealth, 6(4), e8524.
- Kooiman, T. J., Dontje, M. L., Sprenger, S. R., Krijnen, W. P., Van der Schans, C. P., & de Groot, M. (2015). Reliability and validity of ten consumer activity trackers. BMC sports science, medicine and rehabilitation, 7, 1-11.
- Rosenberger, M. E., Buman, M. P., Haskell, W. L., McConnell, M. V., & Carstensen, L. L. (2016). 24 hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Medicine and science in sports and exercise, 48(3), 457.
M
Company: Medisana GmbH, Neuss, Germany
Literature:
Company: Vandrico Inc., Vancouver, Canada
Literature:
- Jayaraman, C., Mummidisetty, C. K., Mannix-Slobig, A., McGee Koch, L., & Jayaraman, A. (2018). Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: a pilot investigation validating two research grade sensors. Journal of neuroengineering and rehabilitation, 15, 1-18.
- Jayaraman, C., Mummidisetty, C. K., & Jayaraman, A. (2016). Effect of wearable sensor dynamics on physical activity estimates: a comparison between SCI vs. healthy individuals. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3282-3285). IEEE.
- Welk, G., Kim, Y., Shook, R. P., Ellingson, L., & Lobelo, R. L. (2017). Validation of a noninvasive, disposable activity monitor for clinical applications. Journal of Physical Activity and Health, 14(7), 546-551.
Company: Microsoft, Inc., Redmond, WA, USA
Literature:
- Madigan, E. A. (2019). Fitness band accuracy in older community dwelling adults. Health Informatics Journal, 25(3), 676-682.
- Chow, J. J., Thom, J. M., Wewege, M. A., Ward, R. E., & Parmenter, B. J. (2017). Accuracy of step count measured by physical activity monitors: The effect of gait speed and anatomical placement site. Gait & posture, 57, 199-203.
- Chowdhury, E. A., Western, M. J., Nightingale, T. E., Peacock, O. J., & Thompson, D. (2017). Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PloS one, 12(2), e0171720.
- Pope, Z. C., Lee, J. E., Zeng, N., & Gao, Z. (2019). Validation of four smartwatches in energy expenditure and heart rate assessment during exergaming. Games for Health Journal, 8(3), 205-212.
- Pope, Z. C., Zeng, N., Li, X., Liu, W., & Gao, Z. (2019). Accuracy of commercially available smartwatches in assessing energy expenditure during rest and exercise. Journal for the Measurement of Physical Behaviour, 2(2), 73-81.
- Shcherbina, A., Mattsson, C. M., Waggott, D., Salisbury, H., Christle, J. W., Hastie, T., ... & Ashley, E. A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of personalized medicine, 7(2), 3.
- Thiebaud, R. S., Funk, M. D., Patton, J. C., Massey, B. L., Shay, T. E., Schmidt, M. G., & Giovannitti, N. (2018). Validity of wrist-worn consumer products to measure heart rate and energy expenditure. Digital health, 4, 2055207618770322.
Company: Misfit Wearables, Burlingame, CA, USA
Literature:
Company: Fossil Group, Richardson, TX, USA
Literature:
Company: Fossil Group, Richardson, TX, USA
Literature:
- Hao, Y., Ma, X. K., Zhu, Z., & Cao, Z. B. (2021). Validity of wrist-wearable activity devices for estimating physical activity in adolescents: Comparative study. JMIR mHealth and uHealth, 9(1), e18320.
- Kubala, A. G., Barone Gibbs, B., Buysse, D. J., Patel, S. R., Hall, M. H., & Kline, C. E. (2020). Field-based measurement of sleep: agreement between six commercial activity monitors and a validated accelerometer. Behavioral sleep medicine, 18(5), 637-652.
- LaMunion, S. R., Blythe, A. L., Hibbing, P. R., Kaplan, A. S., Clendenin, B. J., & Crouter, S. E. (2020). Use of consumer monitors for estimating energy expenditure in youth. Applied Physiology, Nutrition, and Metabolism, 45(2), 161-168.
Company: MonDevices Inc., New York, NY, USA
Literature:
Company: Sen.se, Paris, France
Literature:
Company: Ambulatory Monitoring Inc., Ardsley, NY, USA
Link: https://www.ambulatory-monitoring.com
Literature:
- Kanady, J. C., Ruoff, L., Straus, L. D., Varbel, J., Metzler, T., Richards, A., ... & Neylan, T. C. (2020). Validation of sleep measurement in a multisensor consumer grade wearable device in healthy young adults. Journal of Clinical Sleep Medicine, 16(6), 917-924.
- Esbensen, A. J., Hoffman, E. K., Stansberry, E., & Shaffer, R. (2018). Convergent validity of actigraphy with polysomnography and parent reports when measuring sleep in children with Down syndrome. Journal of Intellectual Disability Research, 62(4), 281-291.
- Gottschlich, M. M., Mayes, T., Khoury, J., Simakajornboon, N., & Kagan, R. J. (2013). Comparison of sleep parameters obtained from actigraphy and polysomnography during the rehabilitative phase after burn. Journal of Burn Care & Research, 34(1), 183-190.
- Haghayegh, S., Khoshnevis, S., Smolensky, M. H., & Diller, K. R. (2019). Accuracy of PurePulse photoplethysmography technology of Fitbit Charge 2 for assessment of heart rate during sleep. Chronobiology international, 36(7), 927–933.
- Kogure, T., Shirakawa, S., Shimokawa, M., & Hosokawa, Y. (2011). Automatic sleep/wake scoring from body motion in bed: validation of a newly developed sensor placed under a mattress. Journal of physiological anthropology, 30(3), 103-109.
Company: Ambulatory Monitoring Inc., Ardsley, NY, USA
Link: https://www.ambulatory-monitoring.com
Literature:
- Niel, K., LaRosa, K. N., Klages, K. L., Merchant, T. E., Wise, M. S., Witcraft, S. M., ... & Crabtree, V. M. (2020). Actigraphy versus polysomnography to measure sleep in youth treated for craniopharyngioma. Behavioral Sleep Medicine, 18(5), 589-597.
- Meltzer, L. J., Walsh, C. M., Traylor, J., & Westin, A. M. (2012). Direct comparison of two new actigraphs and polysomnography in children and adolescents. Sleep, 35(1), 159-166.
- Meltzer, L. J., & Westin, A. M. (2011). A comparison of actigraphy scoring rules used in pediatric research. Sleep medicine, 12(8), 793-796.
- Roane, B. M., Van Reen, E., Hart, C. N., Wing, R., & Carskadon, M. A. (2015). Estimating sleep from multisensory armband measurements: validity and reliability in teens. Journal of sleep research, 24(6), 714-721.
- Rupp, T. L., & Balkin, T. J. (2011). Comparison of Motionlogger Watch and Actiwatch actigraphs to polysomnography for sleep/wake estimation in healthy young adults. Behavior research methods, 43, 1152-1160.
- Sadaka, Y., Sadeh, A., Bradbury, L., Massicotte, C., Zak, M., Go, C., ... & Weiss, S. K. (2014). Validation of actigraphy with continuous video-electroencephalography in children with epilepsy. Sleep medicine, 15(9), 1075-1081.
- Weiss, A. R., Johnson, N. L., Berger, N. A., & Redline, S. (2010). Validity of activity-based devices to estimate sleep. Journal of Clinical Sleep Medicine, 6(4), 336-342.
Company: CamNTech, Cambridge, UK
Link: https://www.camntech.com
Literature:
- Ameen, M. S., Cheung, L. M., Hauser, T., Hahn, M. A., & Schabus, M. (2019). About the accuracy and problems of consumer devices in the assessment of sleep. Sensors, 19(19), 4160.
- Chakravarthy, A., & Resnick, B. (2017). Reliability and validity testing of the MotionWatch 8 in older adults. Journal of Nursing Measurement, 25(3), 549-558.
Company: Motorola, Chicago, IL, USA
Literature:
- Bunn, J. A., Jones, C., Oliviera, A., & Webster, M. J. (2019). Assessment of step accuracy using the Consumer Technology Association standard. Journal of sports sciences, 37(3), 244-248.
- El-Amrawy, F., & Nounou, M. I. (2015). Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial?. Healthcare informatics research, 21(4), 315-320.
Company: Movband, LLC, Brecksville, OH, USA
Literature:
- Barkley, Z. R., Davis, K. J., Feng, S., Balashov, N., Fried, A., DiGangi, J., ... & Halliday, H. S. (2019). Forward modeling and optimization of methane emissions in the South Central United States using aircraft transects across frontal boundaries. Geophysical Research Letters, 46(22), 13564-13573.
- Sirard, J. R., Masteller, B., Freedson, P. S., Mendoza, A., & Hickey, A. (2017). Youth oriented activity trackers: Comprehensive laboratory-and field-based validation. Journal of medical Internet research, 19(7), e250.
Company: DHS Group, Houston, TX, USA
Literature:
Company: Maastricht Instruments, Maastricht, NL
Link: https://maastrichtinstruments.nl
Literature:
- Ummels, D., Bijnens, W., Aarts, J., Meijer, K., Beurskens, A. J., & Beekman, E. (2020). The validation of a pocket worn activity tracker for step count and physical behavior in older adults during simulated activities of daily living. Gerontology and geriatric medicine, 6, 2333721420951732.
- Bijnens, W., Aarts, J., Stevens, A., Ummels, D., & Meijer, K. (2019). Optimization and validation of an adjustable activity classification algorithm for assessment of physical behavior in elderly. Sensors, 19(24), 5344.
- van der Weegen, S., Essers, H., Spreeuwenberg, M., Verwey, R., Tange, H., de Witte, L., & Meijer, K. (2015). Concurrent validity of the MOX activity monitor compared to the ActiGraph GT3X. Telemedicine and e-Health, 21(4), 259-266.
Company: Electronics GmbH, Henggart, Switzerland
Literature:
Company: Electronics GmbH, Henggart, Switzerland
Literature:
Company: CurAegis Technologies, Rochester, NY, USA
Literature:
Company: Technogym, Gambettola, Italy
Link: https://www.technogym.com/de-DE/
Literature:
- McGinley, S. K., Armstrong, M. J., Khandwala, F., Zanuso, S., & Sigal, R. J. (2015). Assessment of the MyWellness Key accelerometer in people with type 2 diabetes. Applied Physiology, Nutrition, and Metabolism, 40(11), 1193-1198.
- Bergamin, M., Ermolao, A., Sieverdes, J. C., Zaccaria, M., & Zanuso, S. (2012). Validation of the mywellness key in walking and running speeds. Journal of Sports Science & Medicine, 11(1), 57.
- Herrmann, S. D., Hart, T. L., Lee, C. D., & Ainsworth, B. E. (2010). Evaluation of the MyWellness Key accelerometer. British journal of sports medicine.
N
Company: New Lifestyles Inc., Lee´s Summit, MO, USA
Link: https://www.new-lifestyles.com/default.asp
Literature:
Company: New Lifestyles Inc., Lee´s Summit, MO, USA
Link: https://www.new-lifestyles.com/default.asp
Literature:
Company: New Lifestyles Inc., Lee´s Summit, MO, USA
Link: https://www.new-lifestyles.com/default.asp
Literature:
- Briseno, G. G., & Smith, J. D. (2014). Pedometer accuracy in persons using lower-limb prostheses. JPO: Journal of Prosthetics and Orthotics, 26(2), 87-92.
- Smith, J. D., & Schroeder, C. A. (2010). Pedometer accuracy in elementary school children while walking, skipping, galloping, and sliding. Measurement in Physical Education and Exercise Science, 14(2), 92-103.
Company: Nike Inc., Beaverton, OR, USA
Literature:
Company: Nokia Corporation, Espoo, Finland
Literature:
- Degroote, L., Hamerlinck, G., Poels, K., Maher, C., Crombez, G., De Bourdeaudhuij, I., ... & DeSmet, A. (2020). Low-cost consumer-based trackers to measure physical activity and sleep duration among adults in free-living conditions: Validation study. JMIR mHealth and uHealth, 8(5), e16674.
- Lebleu, J., Detrembleur, C., Guebels, C., Hamblenne, P., & Valet, M. (2020). Concurrent validity of Nokia Go activity tracker in walking and free‐living conditions. Journal of Evaluation in Clinical Practice, 26(1), 223-228.
- De Ridder, R., & De Blaiser, C. (2019). Activity trackers are not valid for step count registration when walking with crutches. Gait & posture, 70, 30-32.
O
Company: Ambulatory Monitoring, Inc., Ardsley, NY, USA
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Murakami, H., Kawakami, R., Nakae, S., Yamada, Y., Nakata, Y., Ohkawara, K., ... & Miyachi, M. (2019). Accuracy of 12 wearable devices for estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method: validation study. JMIR mHealth and uHealth, 7(8), e13938.
- Park, J., Ishikawa-Takata, K., Tanaka, S., Bessyo, K., Tanaka, S., & Kimura, T. (2017). Accuracy of estimating step counts and intensity using accelerometers in older people with or without assistive devices. Journal of aging and physical activity, 25(1), 41-50.
- Park, J., Ishikawa-Takata, K., Tanaka, S., Mekata, Y., & Tabata, I. (2011). Effects of walking speed and step frequency on estimation of physical activity using accelerometers. Journal of physiological anthropology, 30(3), 119-127.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Tanaka, C., Hikihara, Y., Inoue, S., & Tanaka, S. (2019). The choice of pedometer impacts on daily step counts in primary school children under free-living conditions. International journal of environmental research and public health, 16(22), 4375.
- Kurita, S., Yano, S., Ishii, K., Shibata, A., Sasai, H., Nakata, Y., ... & Oka, K. (2017). Comparability of activity monitors used in Asian and Western-country studies for assessing free-living sedentary behaviour. PloS one, 12(10), e0186523.
- Shimizu, N., Hashidate, H., Ota, T., & Saito, A. (2018). The known-groups validity of intensity-based physical activity measurement using an accelerometer in people with subacute stroke. Journal of Physical Therapy Science, 30(4), 507-513.
- Tripette, J., Ando, T., Murakami, H., Yamamoto, K., Ohkawara, K., Tanaka, S., & Miyachi, M. (2014). Evaluation of active video games intensity: comparison between accelerometer-based predictions and indirect calorimetric measurements. Technology and Health Care, 22(2), 199-208.
- Yoshida, A., Ishikawa-Takata, K., Tanaka, S., Suzuki, N., Nakae, S., Murata, H., ... & Higuchi, M. (2019). Validity of combination use of activity record and accelerometry to measure free-living total energy expenditure in female endurance runners. The Journal of Strength & Conditioning Research, 33(11), 2962-2970.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Foster, R. C., Lanningham-Foster, L. M., Manohar, C., McCrady, S. K., Nysse, L. J., Kaufman, K. R., ... & Levine, J. A. (2005). Precision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditure. Preventive medicine, 41(3-4), 778-783.
- Melanson, E. L., Knoll, J. R., Bell, M. L., Donahoo, W. T., Hill, J. O., Nysse, L. J., ... & Levine, J. A. (2004). Commercially available pedometers: considerations for accurate step counting. Preventive medicine, 39(2), 361-368.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Mitre, N., Lanningham-Foster, L., Foster, R., & Levine, J. A. (2009). Pedometer accuracy for children: can we recommend them for our obese population?. Pediatrics, 123(1), e127-e131.
- Crouter, S. E., Schneider, P. L., Karabulut, M., & Bassett, D. R. (2003). Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Medicine and science in sports and exercise, 35(8), 1455-1460.
- Le Masurier, G. C., Lee, S. M., & Tudor-Locke, C. (2004). Motion sensor accuracy under controlled and free-living conditions. Medicine and science in sports and exercise, 36(5), 905-910.
- Schneider, P. L., Crouter, S. E., & Bassett, D. R. (2004). Pedometer measures of free-living physical activity: comparison of 13 models. Medicine and science in sports and exercise, 36(2), 331-335.
- Schneider, P. L., Crouter, S. E., Lukajic, O., & Bassett Jr, D. R. (2003). Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Medicine and science in sports and exercise, 35(10), 1779-1784.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Johnson, M., Meltz, K., Hart, K., Schmudlach, M., Clarkson, L., & Borman, K. (2015). Validity of the Actical activity monitor for assessing steps and energy expenditure during walking. Journal of Sports Sciences, 33(8), 769-776.
- Briseno, G. G., & Smith, J. D. (2014). Pedometer accuracy in persons using lower-limb prostheses. JPO: Journal of Prosthetics and Orthotics, 26(2), 87-92.
- Hasson, R. E., Haller, J., Pober, D. M., Staudenmayer, J., & Freedson, P. S. (2009). Validity of the Omron HJ-112 pedometer during treadmill walking. Medicine and Science in Sports and Exercise, 41(4), 805-809.
- Johnson, M. (2015). Activity monitors step count accuracy in community-dwelling older adults. Gerontology and geriatric medicine, 1, 2333721415601303.
- Pitchford, E. A., & Yun, J. (2010). The accuracy of pedometers for adults with Down syndrome. Adapted Physical Activity Quarterly, 27(4), 321-336.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Smith, J. D., Guerra, G., & Burkholder, B. G. (2020). The validity and accuracy of wrist-worn activity monitors in lower-limb prosthesis users. Disability and rehabilitation, 42(22), 3182-3188.
- Giannakidou, D. M., Kambas, A., Ageloussis, N., Fatouros, I., Christoforidis, C., Venetsanou, F., ... & Taxildaris, K. (2012). The validity of two Omron pedometers during treadmill walking is speed dependent. European journal of applied physiology, 112, 49-57.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Hart, T. L., Brusseau, T., Kulinna, P. H., McClain, J. J., & Tudor-Locke, C. (2011). Evaluation of low-cost, objective instruments for assessing physical activity in 10–11-year-old children. Research quarterly for exercise and sport, 82(4), 600-609.
- Holbrook, E. A., Barreira, T. V., & Kang, M. (2009). Validity and reliability of Omron pedometers for prescribed and self-paced walking. Medicine & Science in Sports & Exercise, 41(3), 670-674.
- McClain, J. J., Hart, T. L., Getz, R. S., & Tudor-Locke, C. (2010). Convergent validity of 3 low cost motion sensors with the ActiGraph accelerometer. Journal of Physical Activity and Health, 7(5), 662-670.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Kooiman, T. J., Dontje, M. L., Sprenger, S. R., Krijnen, W. P., Van der Schans, C. P., & de Groot, M. (2015). Reliability and validity of ten consumer activity trackers. BMC sports science, medicine and rehabilitation, 7, 1-11.
- De Cocker, K. A., De Meyer, J., De Bourdeaudhuij, I. M., & Cardon, G. M. (2012). Non-traditional wearing positions of pedometers: validity and reliability of the Omron HJ-203-ED pedometer under controlled and free-living conditions. Journal of Science and Medicine in Sport, 15(5), 418-424.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Steeves, J. A., Tyo, B. M., Connolly, C. P., Gregory, D. A., Stark, N. A., & Bassett, D. R. (2011). Validity and reliability of the Omron HJ-303 tri-axial accelerometer-based pedometer. Journal of Physical Activity and Health, 8(7), 1014-1020.
- Husted, H. M., & Llewellyn, T. L. (2017). The accuracy of pedometers in measuring walking steps on a treadmill in college students. International journal of exercise science, 10(1), 146.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Hergenroeder, A. L., Gibbs, B. B., Kotlarczyk, M. P., Perera, S., Kowalsky, R. J., & Brach, J. S. (2019). Accuracy and acceptability of commercial-grade physical activity monitors in older adults. Journal of aging and physical activity, 27(2), 222-229.
- Battenberg, A. K., Donohoe, S., Robertson, N., & Schmalzried, T. P. (2017, June). The accuracy of personal activity monitoring devices. In Seminars in Arthroplasty (Vol. 28, No. 2, pp. 71-75). WB Saunders.
- Huang, Y., Xu, J., Yu, B., & Shull, P. B. (2016). Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking. Gait & posture, 48, 36-41.
- Kendall, B., Bellovary, B., & Gothe, N. P. (2019). Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test. Journal of sports sciences, 37(1), 42-49.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
- Swartz, A. M., Strath, S. J., Miller, N. E., Grimm, E. K., Ewalt, L. A., Loy, M. S., & Gennuso, K. P. (2009). Validity of physical activity monitors in assessing energy expenditure in normal, overweight, and obese adults. The open sports sciences journal, 2, 58.
- Nakae, S., Oshima, Y., & Ishii, K. (2008). Accuracy of spring-levered and piezo-electric pedometers in primary school Japanese children. Journal of physiological anthropology, 27(5), 233-239.
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Omron Healthcare Inc., Bannockburn, IL, USA
Link: https://www.omron-healthcare.de/aktivitaetsmonitoring
Literature:
Company: Oregon Scientific, Tualatin, OR, USA
Link: https://www.oregonscientificstore.com/
Literature:
- Schneider, P. L., Crouter, S. E., & Bassett, D. R. (2004). Pedometer measures of free-living physical activity: comparison of 13 models. Medicine and science in sports and exercise, 36(2), 331-335.
- Crouter, S. E., Schneider, P. L., Karabulut, M., & Bassett, D. R. (2003). Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Medicine and science in sports and exercise, 35(8), 1455-1460.
- Schneider, P. L., Crouter, S. E., Lukajic, O., & Bassett Jr, D. R. (2003). Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Medicine and science in sports and exercise, 35(10), 1779-1784.
Company: Oregon Scientific, Tualatin, OR, USA
Link: https://www.oregonscientificstore.com/
Literature:
Company: Oura Health Ltd., Oulu, Finland
Link: https://ouraring.com/de
Literature:
- Chee, N. I., Ghorbani, S., Golkashani, H. A., Leong, R. L., Ong, J. L., & Chee, M. W. (2021). Multi-night validation of a sleep tracking ring in adolescents compared with a research actigraph and polysomnography. Nature and science of sleep, 177-190.
- Roberts, D. M., Schade, M. M., Mathew, G. M., Gartenberg, D., & Buxton, O. M. (2020). Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep, 43(7), zsaa045.
P
Company: Pebble Technology Corp., Redwood City, CA, USA
Link:
Literature:
- El-Amrawy, F., & Nounou, M. I. (2015). Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial?. Healthcare informatics research, 21(4), 315-320.
- Fokkema, T., Kooiman, T. J., Krijnen, W. P., Van der Schans, C. P., & De Groot, M. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc, 49(4), 793-800.
Company: PAM B.V., Doorwerth, Netherlands
Link:
Literature:
Company: Philips, Stamford, CT, USA
Link: https://www.philips.de/
Literature:
- Hendrikx, J., Ruijs, L. S., Cox, L. G., Lemmens, P. M., Schuijers, E. G., & Goris, A. H. (2017). Clinical evaluation of the measurement performance of the Philips Health Watch: a within-person comparative study. JMIR mHealth and uHealth, 5(2), e6893.
- Tedesco, S., Sica, M., Ancillao, A., Timmons, S., Barton, J., & O’Flynn, B. (2019). Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PloS one, 14(5), e0216891.
Company: GaitUp, Lausanne, Switzerland
Link: https://physilog.com/
Literature:
- Aminian, K., Robert, P., Buchser, E. E., Rutschmann, B., Hayoz, D., & Depairon, M. (1999). Physical activity monitoring based on accelerometry: validation and comparison with video observation. Medical & biological engineering & computing, 37, 304-308.
- Nazarahari, M., & Rouhani, H. (2018). Detection of daily postures and walking modalities using a single chest-mounted tri-axial accelerometer. Medical engineering & physics, 57, 75-81.
Company: StepsCount Inc., Ontario, Canada
Link:
Literature:
Company: StepsCount Inc., Ontario, Canada
Link:
Literature:
- Anens, E., Ahlström, I., Emtner, M., Zetterberg, L., Nilsagård, Y., & Hellström, K. (2023). Validity and reliability of physical activity measures in multiple sclerosis. Physiotherapy Theory and Practice, 39(1), 137-153.
- Donahoe, K., MacDonald, D. J., Tremblay, M. S., & Saunders, T. J. (2018). Validation of PiezoRx pedometer derived sedentary time. International journal of exercise science, 11(7), 552.
- Hazell, T. J., Ellery, C. V., Cohen, T. R., Vanstone, C. A., Rodd, C. J., & Weiler, H. A. (2016). Assessment of pedometer accuracy in capturing habitual types of physical activities in overweight and obese children. Pediatric Research, 80(5), 686-692.
- O'Brien, M. W., Wojcik, W. R., & Fowles, J. R. (2018). Medical-grade physical activity monitoring for measuring step count and moderate-to-vigorous physical activity: Validity and reliability study. JMIR mHealth and uHealth, 6(9), e10706.
- O’BRIEN, M. W., Wojcik, W. R., D’ENTREMONT, L. I. S. E. T. T. E., & Fowles, J. R. (2018). Validation of the PiezoRx® step count and moderate to vigorous physical activity times in free living conditions in adults: a pilot study. International journal of exercise science, 11(7), 541.
Company: Polar Electro Oy, Kimpel, Finland
Link: https://www.polar.com/de
Literature:
- Boeselt, T., Spielmanns, M., Nell, C., Storre, J. H., Windisch, W., Magerhans, L., ... & Koczulla, A. R. (2016). Validity and usability of physical activity monitoring in patients with chronic obstructive pulmonary disease (COPD). PloS one, 11(6), e0157229.
- Simonsen, M. B., Thomsen, M. J., & Hirata, R. P. (2020). Validation of different stepping counters during treadmill and over ground walking. Gait & Posture, 80, 80-83.
- Spielmanns, M., Bost, D., Windisch, W., Alter, P., Greulich, T., Nell, C., ... & Boeselt, T. (2019). Measuring sleep quality and efficiency with an activity monitoring device in comparison to polysomnography. Journal of clinical medicine research, 11(12), 825.
Company: Polar Electro Oy, Kimpel, Finland
Link: https://www.polar.com/de
Literature:
- Boudreaux, B. D., Hebert, E. P., Hollander, D. B., Williams, B. M., Cormier, C. L., Naquin, M. R., ... & Kraemer, R. R. (2018). Validity of wearable activity monitors during cycling and resistance exercise. Med Sci Sports Exerc, 50(3), 624-633.
- Bunn, J. A., Jones, C., Oliviera, A., & Webster, M. J. (2019). Assessment of step accuracy using the Consumer Technology Association standard. Journal of sports sciences, 37(3), 244-248.
- Kubala, A. G., Barone Gibbs, B., Buysse, D. J., Patel, S. R., Hall, M. H., & Kline, C. E. (2020). Field-based measurement of sleep: agreement between six commercial activity monitors and a validated accelerometer. Behavioral sleep medicine, 18(5), 637-652.
- Montes, J., Tandy, R., Young, J., Lee, S. P., & Navalta, J. (2019). A comparison of multiple wearable technology devices heart rate and step count measurements during free motion and treadmill based measurements. International Journal of Kinesiology and Sports Science, 7(2), 30-39.
- Montes, J., Tandy, R., Young, J., Lee, S. P., & Navalta, J. W. (2020). Step count reliability and validity of five wearable technology devices while walking and jogging in both a free motion setting and on a treadmill. International journal of exercise science, 13(7), 410.
- Navalta, J. W., Montes, J., Bodell, N. G., Aguilar, C. D., Lujan, A., Guzman, G., ... & DeBeliso, M. (2018). Wearable device validity in determining step count during hiking and trail running. Journal for the Measurement of Physical Behaviour, 1(2), 86-93.
Company: Polar Electro Oy, Kimpel, Finland
Link: https://www.polar.com/de
Literature:
- Kim, Y., & Lochbaum, M. (2018). Comparison of polar active watch and waist-and wrist-worn ActiGraph accelerometers for measuring children’s physical activity levels during unstructured afterschool programs. International journal of environmental research and public health, 15(10), 2268.
- Kinnunen, H., Häkkinen, K., Schumann, M., Karavirta, L., Westerterp, K. R., & Kyröläinen, H. (2019). Training-induced changes in daily energy expenditure: Methodological evaluation using wrist-worn accelerometer, heart rate monitor, and doubly labeled water technique. PLoS One, 14(7), e0219563.
- Lee, J. A., Williams, S. M., Brown, D. D., & Laurson, K. R. (2015). Concurrent validation of the Actigraph gt3x+, Polar Active accelerometer, Omron HJ-720 and Yamax Digiwalker SW-701 pedometer step counts in lab-based and free-living settings. Journal of sports sciences, 33(10), 991-1000.
Company: Polar Electro Oy, Kimpel, Finland
Link: https://www.polar.com/de
Literature:
- Lowe, A. L., Lloyd, L. K., Miller, B. K., McCurdy, K. W., & Pope, M. L. (2010). Accuracy of polar F6 in estimating the energy cost of aerobic dance bench stepping in college-age females. Journal of sports medicine and physical fitness, 50(4), 385.
Company: Polar Electro Oy, Kimpel, Finland
Link: https://www.polar.com/de
Literature:
- Boudreaux, B. D., Hebert, E. P., Hollander, D. B., Williams, B. M., Cormier, C. L., Naquin, M. R., ... & Kraemer, R. R. (2018). Validity of wearable activity monitors during cycling and resistance exercise. Med Sci Sports Exerc, 50(3), 624-633.
- Tedesco, S., Sica, M., Ancillao, A., Timmons, S., Barton, J., & O’Flynn, B. (2019). Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PloS one, 14(5), e0216891.
Company: Polar Electro Oy, Kimpel, Finland
Link: https://www.polar.com/de
Literature:
- An, H. S., Jones, G. C., Kang, S. K., Welk, G. J., & Lee, J. M. (2017). How valid are wearable physical activity trackers for measuring steps?. European journal of sport science, 17(3), 360-368.
- Bai, Y., Welk, G. J., Nam, Y. H., Lee, J. A., Lee, J. M., Kim, Y., ... & Dixon, P. M. (2016). Comparison of consumer and research monitors under semistructured settings. Medicine & Science in Sports & Exercise, 48(1), 151-158.
- Fokkema, T., Kooiman, T. J., Krijnen, W. P., Van der Schans, C. P., & De Groot, M. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc, 49(4), 793-800.
- Hao, Y., Ma, X. K., Zhu, Z., & Cao, Z. B. (2021). Validity of wrist-wearable activity devices for estimating physical activity in adolescents: Comparative study. JMIR mHealth and uHealth, 9(1), e18320.
- Šimůnek, A., Dygrýn, J., Gába, A., Jakubec, L., Stelzer, J., & Chmelík, F. (2016). Validity of Garmin Vivofit and Polar Loop for measuring daily step counts in free-living conditions in adults. Acta Gymnica, 46(3), 129-135.
- Šimůnek, A., Dygrýn, J., Jakubec, L., Neuls, F., Frömel, K., & Welk, G. J. (2019). Validity of Garmin Vívofit 1 and Garmin Vívofit 3 for school-based physical activity monitoring. Pediatric exercise science, 31(1), 130-136.
- Smith, J. D., Schroeder, C., & Smith, R. M. (2019). Pedometer accuracy and metabolic cost in elementary school children while walking, skipping, galloping, and sliding. Physical Educator, 76(1), 1-23.
- Smith, J. D., Guerra, G., & Burkholder, B. G. (2020). The validity and accuracy of wrist-worn activity monitors in lower-limb prosthesis users. Disability and rehabilitation, 42(22), 3182-3188.
- Wahl, Y., Düking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in physiology, 8, 725.
- Wang, L., Liu, T., Wang, Y., Li, Q., Yi, J., & Inoue, Y. (2017). Evaluation on step counting performance of wristband activity monitors in daily living environment. IEEE Access, 5, 13020-13027.
Company: Polar Electro Oy, Kimpel, Finland
Link: https://www.polar.com/de
Literature:
- Erdoğan, A., Çetin, C., Karatosun, H., & Baydar, M. L. (2010). Accuracy of the Polar S810i TM heart rate monitor and the Sensewear Pro Armband™ to estimate energy expenditure of indoor rowing exercise in overweight and obese individuals. Journal of Sports Science and Medicine, 9(3), 508-516.
Company: Polar Electro Oy, Kimpel, Finland
Link: https://www.polar.com/de
Literature:
- Hernández-Vicente, A., Santos-Lozano, A., De Cocker, K., & Garatachea, N. (2016). Validation study of Polar V800 accelerometer. Annals of translational medicine, 4(15).
- Passler, S., Bohrer, J., Blöchinger, L., & Senner, V. (2019). Validity of wrist-worn activity trackers for estimating VO2max and energy expenditure. International journal of environmental research and public health, 16(17), 3037.
- Roos, L., Taube, W., Beeler, N., & Wyss, T. (2017). Validity of sports watches when estimating energy expenditure during running. BMC Sports Science, Medicine and Rehabilitation, 9(1), 1-8.
Company: Polar Electro Oy, Kimpel, Finland
Link: https://www.polar.com/de
Literature:
- Gilgen-Ammann, R., Schweizer, T., & Wyss, T. (2019). Accuracy of the multisensory wristwatch polar vantage's estimation of energy expenditure in various activities: instrument validation study. JMIR mHealth and uHealth, 7(10), e14534.
- Kastelic, K., Dobnik, M., Löfler, S., Hofer, C., & Šarabon, N. (2021). Validity, reliability and sensitivity to change of three consumer-grade activity trackers in controlled and free-living conditions among older adults. Sensors, 21(18), 6245.
Company: Gorman ProMed PTY Ltd., Melbourne, Australia
Literature:
Company: Össur, Reykjavík, Iceland
Literature:
Company: Oy, Espoo, Finland
Link: https://pulseon.com/
Literature:
- Parak, J., Uuskoski, M., Machek, J., & Korhonen, I. (2017). Estimating heart rate, energy expenditure, and physical performance with a wrist photoplethysmographic device during running. JMIR mHealth and uHealth, 5(7), e7437.
- Shcherbina, A., Mattsson, C. M., Waggott, D., Salisbury, H., Christle, J. W., Hastie, T., ... & Ashley, E. A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of personalized medicine, 7(2), 3.
Q
Company: Qualcomm, San Diego, California, USA
Literature:
R
Company:
Link:
Literature:
- Eyre, E. L., Tallis, J., Wilson, S., Wilde, L., Akhurst, L., Wanderleys, R., & Duncan, M. J. (2019). Research Tracker 6 accelerometer calibration and validation in comparison to GENEActiv, ActiGraph, and gas analysis in young adults. Journal for the Measurement of Physical Behaviour, 2(3), 176-187.
S
Company: Samsung Electro-Mechanics, Seoul, South Korea
Link: https://www.samsung.com/de/
Literature:
Company: Samsung Electro-Mechanics, Seoul, South Korea
Link: https://www.samsung.com/de/
Literature:
Company: Samsung Electro-Mechanics, Seoul, South Korea
Link: https://www.samsung.com/de/
Literature:
- Montes, J., Tandy, R., Young, J., Lee, S. P., & Navalta, J. W. (2020). Step count reliability and validity of five wearable technology devices while walking and jogging in both a free motion setting and on a treadmill. International journal of exercise science, 13(7), 410.
- Montes, J., Tandy, R., Young, J., Lee, S. P., & Navalta, J. (2019). A comparison of multiple wearable technology devices heart rate and step count measurements during free motion and treadmill based measurements. International Journal of Kinesiology and Sports Science, 7(2), 30-39.
- Navalta, J. W., Montes, J., Bodell, N. G., Aguilar, C. D., Lujan, A., Guzman, G., ... & DeBeliso, M. (2018). Wearable device validity in determining step count during hiking and trail running. Journal for the Measurement of Physical Behaviour, 1(2), 86-93.
- El-Amrawy, F., & Nounou, M. I. (2015). Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial?. Healthcare informatics research, 21(4), 315-320.
Company: Samsung Electro-Mechanics, Seoul, South Korea
Link: https://www.samsung.com/de/
Literature:
Company: Samsung Electro-Mechanics, Seoul, South Korea
Link: https://www.samsung.com/de/
Literature:
- Kim, K., Park, D. Y., Song, Y. J., Han, S., & Kim, H. J. (2022). Consumer-grade sleep trackers are still not up to par compared to polysomnography. Sleep and Breathing, 26(4), 1573-1582.
- Kubala, A. G., Barone Gibbs, B., Buysse, D. J., Patel, S. R., Hall, M. H., & Kline, C. E. (2020). Field-based measurement of sleep: agreement between six commercial activity monitors and a validated accelerometer. Behavioral sleep medicine, 18(5), 637-652.
- LaMunion, S. R., Blythe, A. L., Hibbing, P. R., Kaplan, A. S., Clendenin, B. J., & Crouter, S. E. (2020). Use of consumer monitors for estimating energy expenditure in youth. Applied Physiology, Nutrition, and Metabolism, 45(2), 161-168.
Company: Samsung Electro-Mechanics, Seoul, South Korea
Link: https://www.samsung.com/de/
Literature:
- Davoudi, A., Wanigatunga, A. A., Kheirkhahan, M., Corbett, D. B., Mendoza, T., Battula, M., ... & Rashidi, P. (2019). Accuracy of samsung gear s smartwatch for activity recognition: Validation study. JMIR mHealth and uHealth, 7(2), e11270.
- Fokkema, T., Kooiman, T. J., Krijnen, W. P., Van der Schans, C. P., & De Groot, M. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc, 49(4), 793-800.
- El-Amrawy, F., & Nounou, M. I. (2015). Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial?. Healthcare informatics research, 21(4), 315-320.
Company: Samsung Electro-Mechanics, Seoul, South Korea
Link: https://www.samsung.com/de/
Literature:
Company: Murata Electronics
Links: https://www.digikey.de/de/products/detail/murata-electronics/SCA3000-D01/1107027
Literature:
Company: StepsCount Inc., Deep River, ON, Canada
Literature:
Company: StepsCount Inc., Deep River, ON, Canada
Literature:
Company: BodyMedia, Pittsburgh, PA, USA
Link: https://bodymedia.com
Literature:
- O’Driscoll, R., Turicchi, J., Hopkins, M., Horgan, G. W., Finlayson, G., & Stubbs, J. R. (2020). Improving energy expenditure estimates from wearable devices: A machine learning approach. Journal of Sports Sciences, 38(13), 1496-1505.
- Jin, J., Zhuang, J., Zhu, Z., Wang, S., Chen, P., & Zhu, W. (2018). Energy expenditure of type-specific sedentary behaviors estimated using sensewear mini armband: A metabolic chamber validation study among adolescents. Kinesiology, 50(1), 52-56.
- Lopez, G. A., Brønd, J. C., Andersen, L. B., Dencker, M., & Arvidsson, D. (2018). Validation of SenseWear Armband in children, adolescents, and adults. Scandinavian journal of medicine & science in sports, 28(2), 487-495.
- Pribyslavska, V., Caputo, J. L., Coons, J. M., & Barry, V. W. (2018). Impact of EPOC adjustment on estimation of energy expenditure using activity monitors. Journal of Medical Engineering & Technology, 42(4), 265-273.
- Taylor, M., Nagle, E. F., Goss, F. L., Rubinstein, E. N., & Simonson, A. (2018). Evaluating energy expenditure estimated by wearable technology during variable intensity activity on female collegiate athletes. International journal of exercise science, 11(7), 598.
- An, H. S., Jones, G. C., Kang, S. K., Welk, G. J., & Lee, J. M. (2017). How valid are wearable physical activity trackers for measuring steps?. European journal of sport science, 17(3), 360-368.
- Brooke, S. M., An, H. S., Kang, S. K., Noble, J. M., Berg, K. E., & Lee, J. M. (2017). Concurrent validity of wearable activity trackers under free-living conditions. Journal of strength and conditioning research, 31(4), 1097-1106.
- van Loo, C. M., Okely, A. D., Batterham, M. J., Hinkley, T., Ekelund, U., Brage, S., ... & Cliff, D. P. (2017). Validation of the SenseWear Mini activity monitor in 5− 12-year-old children. Journal of science and medicine in sport, 20(1), 55-59.
- Zorrilla-Revilla, G., Mateos, A., Prado-Nóvoa, O., Vidal-Cordasco, M., & Rodríguez, J. (2017). Carrying loads: validating a portable tri-axial accelerometer during frequent and brief physical activity. Journal of science and medicine in sport, 20(8), 771-776.
- Brazeau, A. S., Beaudoin, N., Bélisle, V., Messier, V., Karelis, A. D., & Rabasa-Lhoret, R. (2016). Validation and reliability of two activity monitors for energy expenditure assessment. Journal of science and medicine in sport, 19(1), 46-50.
- Feehan, L. M., Goldsmith, C. H., Leung, A. Y., & Li, L. C. (2016). SenseWearMini and Actigraph GT3X accelerometer classification of observed sedentary and light-intensity physical activities in a laboratory setting. Physiotherapy Canada, 68(2), 116-123.
- Calabro, M. A., Kim, Y., Franke, W. D., Stewart, J. M., & Welk, G. J. (2015). Objective and subjective measurement of energy expenditure in older adults: a doubly labeled water study. European journal of clinical nutrition, 69(7), 850-855.
- Martien, S., Delecluse, C., Seghers, J., & Boen, F. (2015). Counting steps in institutionalized older adults during daily life activities: The validation of two motion sensors. Journal of Aging and Physical Activity, 23(3), 383-390.
- Storm, F. A., Heller, B. W., & Mazzà, C. (2015). Step detection and activity recognition accuracy of seven physical activity monitors. PloS one, 10(3), e0118723.
- Calabr, M. A. S., Lee, J. M., Saint-Maurice, P. F., Yoo, H., & Welk, G. J. (2014). Validity of physical activity monitors for assessing lower intensity activity in adults. International Journal of Behavioral Nutrition and Physical Activity, 11, 1-9.
- Reeve, M. D., Pumpa, K. L., & Ball, N. (2014). Accuracy of the SenseWear Armband Mini and the BodyMedia FIT in resistance training. Journal of science and medicine in sport, 17(6), 630-634.
- Vernillo, G., Savoldelli, A., Pellegrini, B., & Schena, F. (2014). Evaluation of the SenseWear Mini Armband to assess energy expenditure during pole walking. International journal of sport nutrition and exercise metabolism, 24(5), 565-569.
- Zanetti, S., Pumpa, K. L., Wheeler, K. W., & Pyne, D. B. (2014). Validity of the SenseWear armband to assess energy expenditure during intermittent exercise and recovery in rugby union players. The Journal of Strength & Conditioning Research, 28(4), 1090-1095.
- Smith, K. M., Lanningham-Foster, L. M., Welk, G. J., & Campbell, C. G. (2012). Validity of the SenseWear® Armband to predict energy expenditure in pregnant women. Medicine and science in sports and exercise, 44(10), 2001-2008.
- Calabro, M. A., Lee, J., Maurice, P. D. S., & Welk, G. J. (2011). Validation of Pattern-Recognition Monitors in Children Using the Doubly Labeled Water Method: 938: June 2 3: 15 PM-3: 30 PM. Medicine & Science in Sports & Exercise, 43(5), 132.
- Johannsen, D. L., Calabro, M. A., Stewart, J., Franke, W., Rood, J. C., & Welk, G. J. (2010). Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Medicine and science in sports and exercise, 42(11), 2134-2140.
Company: BodyMedia, Pittsburgh, PA, USA
Link: https://bodymedia.com
Literature:
- Gould, Z. R., Mora-Gonzalez, J., Aguiar, E. J., Schuna, J. M., Barreira, T. V., Moore, C. C., ... & Tudor-Locke, C. (2021). A catalog of validity indices for step counting wearable technologies during treadmill walking: the CADENCE-Kids study. International Journal of Behavioral Nutrition and Physical Activity, 18, 1-14.
- Conway, M. R., Marshall, M. R., Schlaff, R. A., Pfeiffer, K. A., & Pivarnik, J. M. (2018). Physical Activity Device Reliability and Validity during Pregnancy and Postpartum. Medicine and science in sports and exercise, 50(3), 617-623.
- Gastin, P. B., Cayzer, C., Dwyer, D., & Robertson, S. (2018). Validity of the ActiGraph GT3X+ and BodyMedia SenseWear Armband to estimate energy expenditure during physical activity and sport. Journal of science and medicine in sport, 21(3), 291-295.
- Lee, J. M., Byun, W., Keill, A., Dinkel, D., & Seo, Y. (2018). Comparison of wearable trackers’ ability to estimate sleep. International journal of environmental research and public health, 15(6), 1265.
- Chowdhury, E. A., Western, M. J., Nightingale, T. E., Peacock, O. J., & Thompson, D. (2017). Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PloS one, 12(2), e0171720.
- Gruwez, A., Libert, W., Ameye, L., & Bruyneel, M. (2017). Reliability of commercially available sleep and activity trackers with manual switch-to-sleep mode activation in free-living healthy individuals. International journal of medical informatics, 102, 87-92.
- Mandigout, S., Lacroix, J., Ferry, B., Vuillerme, N., Compagnat, M., & Daviet, J. C. (2017). Can energy expenditure be accurately assessed using accelerometry-based wearable motion detectors for physical activity monitoring in post-stroke patients in the subacute phase?. European journal of preventive cardiology, 24(18), 2009-2016.
- Peiris, C. L., Cumming, T. B., Kramer, S., Johnson, L., Taylor, N. F., & Shields, N. (2017). Accelerometer use in young people with Down syndrome: A preliminary cross-validation and reliability study. Journal of Intellectual & Developmental Disability, 42(4), 339-350.
- Santos-Lozano, A., Hernández-Vicente, A., Pérez-Isaac, R., Santín-Medeiros, F., Cristi-Montero, C., Casajús, J. A., & Garatachea, N. (2017). Is the SenseWear Armband accurate enough to quantify and estimate energy expenditure in healthy adults?. Annals of translational medicine, 5(5).
- Wahl, Y., Düking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in physiology, 8, 725.
- Welk, G., Kim, Y., Shook, R. P., Ellingson, L., & Lobelo, R. L. (2017). Validation of a noninvasive, disposable activity monitor for clinical applications. Journal of Physical Activity and Health, 14(7), 546-551.
- Bhammar, D. M., Sawyer, B. J., Tucker, W. J., Lee, J. M., & Gaesser, G. A. (2016). Validity of SenseWear® Armband v5. 2 and v2. 2 for estimating energy expenditure. Journal of sports sciences, 34(19), 1830-1838.
- Correa, J. B., Apolzan, J. W., Shepard, D. N., Heil, D. P., Rood, J. C., & Martin, C. K. (2016). Evaluation of the ability of three physical activity monitors to predict weight change and estimate energy expenditure. Applied Physiology, Nutrition, and Metabolism, 41(7), 758-766.
- O'Neil, M. E., Fragala-Pinkham, M., Lennon, N., George, A., Forman, J., & Trost, S. G. (2016). Reliability and validity of objective measures of physical activity in youth with cerebral palsy who are ambulatory. Physical therapy, 96(1), 37-45.
- Reece, J. D., Barry, V., Fuller, D. K., & Caputo, J. (2015). Validation of the SenseWear armband as a measure of sedentary behavior and light activity. Journal of Physical Activity and Health, 12(9), 1229-1237.
- Tsang, K., Hiremath, S. V., Cooper, R. A., & Ding, D. (2015). Evaluation of custom energy expenditure models for SenseWear armband in manual wheelchair users. J Rehabil Res Dev, 52(7), 793-804.
- Tucker, W. J., Bhammar, D. M., Sawyer, B. J., Buman, M. P., & Gaesser, G. A. (2015). Validity and reliability of Nike+ Fuelband for estimating physical activity energy expenditure. BMC Sports Science, Medicine and Rehabilitation, 7(1), 1-7.
- Vernillo, G., Savoldelli, A., Pellegrini, B., & Schena, F. (2015). Validity of the SenseWear Armband to assess energy expenditure in graded walking. Journal of Physical Activity and Health, 12(2), 178-183.
- Cox, N. S., Alison, J. A., Button, B. M., Wilson, J. W., Morton, J. M., Dowman, L. M., & Holland, A. E. (2014). Validation of a multi-sensor armband during free-living activity in adults with cystic fibrosis. Journal of Cystic Fibrosis, 13(3), 347-350.
- Ryan, J. M., Walsh, M., & Gormley, J. (2014). A comparison of three accelerometry-based devices for estimating energy expenditure in adults and children with cerebral palsy. Journal of NeuroEngineering and Rehabilitation, 11, 1-10.
- Wetten, A. A., Batterham, M., Tan, S. Y., & Tapsell, L. (2014). Relative validity of 3 accelerometer models for estimating energy expenditure during light activity. Journal of Physical Activity and Health, 11(3), 638-647.
- Casiraghi, F., Lertwattanarak, R., Luzi, L., Chavez, A. O., Davalli, A. M., Naegelin, T., ... & Folli, F. (2013). Energy expenditure evaluation in humans and non-human primates by SenseWear Armband. Validation of energy expenditure evaluation by SenseWear Armband by direct comparison with indirect calorimetry. PLoS One, 8(9), e73651.
- Hiremath, S. V., Ding, D., Farringdon, J., Vyas, N., & Cooper, R. A. (2013). Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury. Spinal cord, 51(9), 705-709.
- Rabinovich, R. A., Louvaris, Z., Raste, Y., Langer, D., Van Remoortel, H., Giavedoni, S., ... & Troosters, T. (2013). Validity of physical activity monitors during daily life in patients with COPD. European Respiratory Journal, 42(5), 1205-1215.
- Ryan, J., & Gormley, J. (2013). An evaluation of energy expenditure estimation by three activity monitors. European journal of sport science, 13(6), 681-688.
- Sharif, M. M., & BaHammam, A. S. (2013). Sleep estimation using BodyMedia's SenseWear™ armband in patients with obstructive sleep apnea. Annals of thoracic medicine, 8(1), 53.
- Tierney, M., Fraser, A., Purtill, H., & Kennedy, N. (2013). Study to determine the criterion validity of the SenseWear Armband as a measure of physical activity in people with rheumatoid arthritis. Arthritis care & research, 65(6), 888-895.
- Benito, P. J., Neiva, C., González-Quijano, P. S., Cupeiro, R., Morencos, E., & Peinado, A. B. (2012). Validation of the SenseWear armband in circuit resistance training with different loads. European journal of applied physiology, 112, 3155-3159.
- Coote, S., & O'Dwyer, C. (2012). Comparative validity of accelerometer-based measures of physical activity for people with multiple sclerosis. Archives of physical medicine and rehabilitation, 93(11), 2022-2028.
- Manns, P. J., & Haennel, R. G. (2012). SenseWear armband and stroke: validity of energy expenditure and step count measurement during walking. Stroke research and treatment, 2012.
- Van Remoortel, H., Raste, Y., Louvaris, Z., Giavedoni, S., Burtin, C., Langer, D., ... & PROactive Consortium. (2012). Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PloS one, 7(6), e39198.
- Cavalheri, V., Donária, L., Ferreira, T., Finatti, M., Camillo, C. A., Ramos, E. M. C., & Pitta, F. (2011). Energy expenditure during daily activities as measured by two motion sensors in patients with COPD. Respiratory medicine, 105(6), 922-929.
- Crisafulli, E., Beneventi, C., Bortolotti, V., Kidonias, N., Fabbri, L. M., Chetta, A., & Clini, E. M. (2011). Energy expenditure at rest and during walking in patients with chronic respiratory failure: a prospective two-phase case-control study. PLoS One, 6(8), e23770.
- Hill, K., Dolmage, T. E., Woon, L., Goldstein, R., & Brooks, D. (2010). Measurement properties of the SenseWear armband in adults with chronic obstructive pulmonary disease. COPD, 5, 6.
- Mackey, D. C., Manini, T. M., Schoeller, D. A., Koster, A., Glynn, N. W., Goodpaster, B. H., ... & Health, Aging, and Body Composition Study. (2011). Validation of an armband to measure daily energy expenditure in older adults. Journals of gerontology series a: biomedical sciences and medical Sciences, 66(10), 1108-1113.
- Erdogan, A., Cetin, C., Karatosun, H., & Baydar, M. L. (2010). Accuracy of the Polar S810iTM heart rate monitor and the Sensewear Pro ArmbandTM to estimate energy expenditure of indoor rowing exercise in overweight and obese individuals. Journal of sports science & medicine, 9(3), 508.
- Furlanetto, K. C., Bisca, G. W., Oldemberg, N., Sant'Anna, T. J., Morakami, F. K., Camillo, C. A., ... & Pitta, F. (2010). Step counting and energy expenditure estimation in patients with chronic obstructive pulmonary disease and healthy elderly: accuracy of 2 motion sensors. Archives of physical medicine and rehabilitation, 91(2), 261-267.
- Dorminy, C. A., Choi, L., Akohoue, S. A., Chen, K. Y., & Buchowski, M. S. (2008). Validity of a multisensor armband in estimating 24-h energy expenditure in children. Medicine and science in sports and exercise, 40(4), 699.
- Cereda, E., Turrini, M., Ciapanna, D., Marbello, L., Pietrobelli, A., & Corradi, E. (2007). Assessing energy expenditure in cancer patients: a pilot validation of a new wearable device. Journal of Parenteral and Enteral Nutrition, 31(6), 502-507.
- Patel, S. A., Benzo, R. P., Slivka, W. A., & Sciurba, F. C. (2007). Activity monitoring and energy expenditure in COPD patients: a validation study. COPD: Journal of Chronic Obstructive Pulmonary Disease, 4(2), 107-112.
- St-Onge, M., Mignault, D., Allison, D. B., & Rabasa-Lhoret, R. (2007). Evaluation of a portable device to measure daily energy expenditure in free-living adults. The American journal of clinical nutrition, 85(3), 742-749.
- Fruin, M. L., & Rankin, J. W. (2004). Validity of a multi-sensor armband in estimating rest and exercise energy expenditure. Medicine and science in sports and exercise, 36(6), 1063-1069.
- Jakicic, J. M., Marcus, M., Gallagher, K. I., Randall, C. O. L. B. Y., Thomas, E., Goss, F. L., & Robertson, R. J. (2004). Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise. Medicine and science in sports and exercise, 36(5), 897-904.
- King, G. A., Torres, N., Potter, C., Brooks, T. J., & Coleman, K. J. (2004). Comparison of activity monitors to estimate energy cost of treadmill exercise. Medicine and science in sports and exercise, 36(7), 1244-1251.
Company: BodyMedia, Pittsburgh, PA, USA
Link: https://bodymedia.com
Literature:
- Alberto, F. P., Nathanael, M., Mathew, B., & Ainsworth, B. E. (2017). Wearable monitors criterion validity for energy expenditure in sedentary and light activities. Journal of sport and health science, 6(1), 103-110.
- Mahendran, N., Kuys, S. S., Downie, E., Ng, P., & Brauer, S. G. (2016). Are Accelerometers and GPS Devices Valid, Reliable and Feasible Tools for Measurement of Community Ambulation After Stroke? 1. Brain Impairment, 17(2), 151-161.
- Slinde, F., Bertz, F., Winkvist, A., Ellegård, L., Olausson, H., & Brekke, H. K. (2013). Energy expenditure by multisensor armband in overweight and obese lactating women validated by doubly labeled water. Obesity, 21(11), 2231-2235.
- Vanroy, C., Vissers, D., Cras, P., Beyne, S., Feys, H., Vanlandewijck, Y., & Truijen, S. (2014). Physical activity monitoring in stroke: SenseWear Pro2 activity accelerometer versus Yamax Digi-Walker SW-200 pedometer. Disability and rehabilitation, 36(20), 1695-1703.
- Berntsen, S., Stafne, S. N., & MØRkved, S. I. V. (2011). Physical activity monitor for recording energy expenditure in pregnancy. Acta obstetricia et gynecologica Scandinavica, 90(8), 903-907.
- Heiermann, S., Khalaj Hedayati, K., Müller, M. J., & Dittmar, M. (2011). Accuracy of a portable multisensor body monitor for predicting resting energy expenditure in older people: a comparison with indirect calorimetry. Gerontology, 57(5), 473-479.
- Bäcklund, C., Sundelin, G., & Larsson, C. (2010). Validity of an armband measuring energy expenditure in overweight and obese children. Medicine & Science in Sports & Exercise, 42(6), 1154-1161.
- Berntsen, S., Hageberg, R., Aandstad, A., Mowinckel, P., Anderssen, S. A., Carlsen, K. H., & Andersen, L. B. (2008). Validity of physical activity monitors in adults participating in free-living activities. British journal of sports medicine.
- Arvidsson, D., Slinde, F., Larsson, S., & Hulthén, L. (2009). Energy cost in children assessed by multisensor activity monitors. Medicine Science in Sports+ Exercise, 41(3), 603.
- Arvidsson, D., Slinde, F., Larsson, S., & Hulthen, L. (2007). Energy cost of physical activities in children: validation of SenseWear Armband. Medicine and science in sports and exercise, 39(11), 2076.
- Papazoglou, D., Augello, G., Tagliaferri, M., Savia, G., Marzullo, P., Maltezos, E., & Liuzzi, A. (2006). Evaluation of a multisensor armband in estimating energy expenditure in obese individuals. Obesity, 14(12), 2217-2223.
Company: BodyMedia, Pittsburgh, PA, USA
Link: https://bodymedia.com
Literature:
- Costello, N., Deighton, K., Cummins, C., Whitehead, S., Preston, T., & Jones, B. (2022). Isolated & combined wearable technology underestimate the total energy expenditure of professional young rugby league players; a doubly labelled water validation study. Journal of Strength and Conditioning Research, 36(12), 3398-3403.
- Adamakis, M. (2020). Criterion validity of wearable monitors and smartphone applications to measure physical activity energy expenditure in adolescents. Sport Sciences for Health, 16, 755-763.
- Kramer, S. F., Johnson, L., Bernhardt, J., & Cumming, T. (2018). Validity of multisensor array for measuring energy expenditure of an activity bout in early stroke survivors. Stroke Research and Treatment, 2018.
- Brazeau, A. S., Beaudoin, N., Bélisle, V., Messier, V., Karelis, A. D., & Rabasa-Lhoret, R. (2016). Validation and reliability of two activity monitors for energy expenditure assessment. Journal of science and medicine in sport, 19(1), 46-50.
- Stålesen, J., Vik, F. N., Hansen, B. H., & Berntsen, S. (2016). Comparison of three activity monitors for estimating sedentary time among children. BMC Sports Science, Medicine and Rehabilitation, 8(1), 1-6.
- Lee, J. A., & Laurson, K. R. (2015). Validity of the SenseWear armband step count measure during controlled and free-living conditions. Journal of Exercise Science & Fitness, 13(1), 16-23.
- Roane, B. M., Van Reen, E., Hart, C. N., Wing, R., & Carskadon, M. A. (2015). Estimating sleep from multisensory armband measurements: validity and reliability in teens. Journal of sleep research, 24(6), 714-721.
- Powell, C., Carson, B. P., Dowd, K. P., & Donnelly, A. E. (2016). The accuracy of the SenseWear Pro3 and the activPAL3 Micro devices for measurement of energy expenditure. Physiological Measurement, 37(10), 1715.
- Rousset, S., Fardet, A., Lacomme, P., Normand, S., Montaurier, C., Boirie, Y., & Morio, B. (2015). Comparison of total energy expenditure assessed by two devices in controlled and free-living conditions. European journal of sport science, 15(5), 391-399.
- Shin, M., Swan, P., & Chow, C. M. (2015). The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions. Sleep science, 8(1), 9-15.
- Andersson, M., Janson, C., & Emtner, M. (2014). Accuracy of three activity monitors in patients with chronic obstructive pulmonary disease: a comparison with video recordings. COPD: Journal of Chronic Obstructive Pulmonary Disease, 11(5), 560-567.
- Brazeau, A. S., Suppere, C., Strychar, I., Belisle, V., Demers, S. P., & Rabasa-Lhoret, R. (2014). Accuracy of energy expenditure estimation by activity monitors differs with ethnicity. International journal of sports medicine, 847-850.
- Calabr, M. A. S., Lee, J. M., Saint-Maurice, P. F., Yoo, H., & Welk, G. J. (2014). Validity of physical activity monitors for assessing lower intensity activity in adults. International Journal of Behavioral Nutrition and Physical Activity, 11, 1-9.
- Van Hoye, K., Mortelmans, P., & Lefevre, J. (2014). Validation of the SenseWear Pro3 Armband using an incremental exercise test. The Journal of Strength & Conditioning Research, 28(10), 2806-2814.
- O’Driscoll, D. M., Turton, A. R., Copland, J. M., Strauss, B. J., & Hamilton, G. S. (2013). Energy expenditure in obstructive sleep apnea: validation of a multiple physiological sensor for determination of sleep and wake. Sleep and Breathing, 17, 139-146.
- Koehler, K., de Marees, M., Braun, H., & Schaenzer, W. (2013). Evaluation of two portable sensors for energy expenditure assessment during high-intensity running. European journal of sport science, 13(1), 31-41.
- Soric, M., Turkalj, M., Kucic, D., Marusic, I., Plavec, D., & Misigoj-Durakovic, M. (2013). Validation of a multi-sensor activity monitor for assessing sleep in children and adolescents. Sleep medicine, 14(2), 201-205.
- Turner, L. J., Houchen, L., Williams, J., & Singh, S. J. (2012). Reliability of pedometers to measure step counts in patients with chronic respiratory disease. Journal of cardiopulmonary rehabilitation and prevention, 32(5), 284-291.
- Brazeau, A. S., Karelis, A. D., Mignault, D., Lacroix, M. J., Prud’Homme, D., & Rabasa-Lhoret, R. (2011). Accuracy of the SenseWear Armband™ during ergocycling. International journal of sports medicine, 761-764.
- Calabro, M. A., Lee, J., Maurice, P. D. S., & Welk, G. J. (2011). Validation of Pattern-Recognition Monitors in Children Using the Doubly Labeled Water Method: 938: June 2 3: 15 PM-3: 30 PM. Medicine & Science in Sports & Exercise, 43(5), 132.
- Colbert, L. H., Matthews, C. E., Havighurst, T. C., Kim, K., & Schoeller, D. A. (2011). Comparative validity of physical activity measures in older adults. Medicine and science in sports and exercise, 43(5), 867.
- Koehler, K., Braun, H., De Marees, M., Fusch, G., Fusch, C., & Schaenzer, W. (2011). Assessing energy expenditure in male endurance athletes: validity of the SenseWear Armband. Medicine and science in sports and exercise, 43(7), 1328-1333.
- Johannsen, D. L., Calabro, M. A., Stewart, J., Franke, W., Rood, J. C., & Welk, G. J. (2010). Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Medicine and science in sports and exercise, 42(11), 2134-2140.
- Dwyer, T. J., Alison, J. A., McKeough, Z. J., Elkins, M. R., & Bye, P. T. P. (2009). Evaluation of the SenseWear activity monitor during exercise in cystic fibrosis and in health. Respiratory medicine, 103(10), 1511-1517.
Literature:
Company: PAL Technologies Ltd, Glasgow, Scotland, UK
Literature:
Company: Ambulatory Monitoring, Inc, Ardsley, NY, USA
Literature:
Company: Smart Health, Fremont, CA, USA
Literature:
Company: HMM Diagnostics GmbH, Dossenheim, Germany
Literature:
Company: SOMNOmedics GmbH, Randersacker, Germany
Link: https://somnomedics.de/de/medizintechnik-fuer-innovative-diagnostik/
Literature:
Company: Sony Computer Entertainment Inc., San Mateo, CA, USA
Link: https://www.sony.de/
Literature:
Company: Spire Inc., San Francisco, CA, USA
Link: https://www.spirehealth.com/technology
Literature:
Company: Sportbrain Holdings Inc., Naples, FL, USA
Literature:
Company: E&B Giftware LLC, Hazleton, PA, USA
Literature:
Company: E&B Giftware LLC, Hazleton, PA, USA
Literature:
Company: E&B Giftware LLC, Hazleton, PA, USA
Literature:
Company: E&B Giftware LLC, Hazleton, PA, USA
Literature:
Company: E&B Giftware LLC, Hazleton, PA, USA
Literature:
Company: Sqord Inc., Durham, NC, USA
Literature:
Company: StepsCount, Deep River, ON, USA
Literature:
Literature:
Company: Kinergy Electronics Co. Ltd., Shenzhen, Hong Kong, China
Literature:
Company: Striiv Inc., Redwood City, CA, USA
Literature:
Company: SUN, Arvada, CO, USA
Literature:
T
Company: TomTom, Amsterdam, Netherlands
Link: https://www.tomtom.com/de_de/navigation/sports/
Literature:
- Pope, Z. C., Lee, J. E., Zeng, N., & Gao, Z. (2019). Validation of four smartwatches in energy expenditure and heart rate assessment during exergaming. Games for Health Journal, 8(3), 205-212.
- Pope, Z. C., Zeng, N., Li, X., Liu, W., & Gao, Z. (2019). Accuracy of commercially available smartwatches in assessing energy expenditure during rest and exercise. Journal for the Measurement of Physical Behaviour, 2(2), 73-81.
- Thiebaud, R. S., Funk, M. D., Patton, J. C., Massey, B. L., Shay, T. E., Schmidt, M. G., & Giovannitti, N. (2018). Validity of wrist-worn consumer products to measure heart rate and energy expenditure. Digital health, 4, 2055207618770322.
Company: TomTom, Amsterdam, Netherlands
Link: https://www.tomtom.com/de_de/navigation/sports/
Literature:
Company: TomTom, Amsterdam, Netherlands
Link: https://www.tomtom.com/de_de/navigation/sports/
Literature:
- Passler, S., Bohrer, J., Blöchinger, L., & Senner, V. (2019). Validity of wrist-worn activity trackers for estimating VO2max and energy expenditure. International journal of environmental research and public health, 16(17), 3037.
- Boudreaux, B. D., Hebert, E. P., Hollander, D. B., Williams, B. M., Cormier, C. L., Naquin, M. R., ... & Kraemer, R. R. (2018). Validity of wearable activity monitors during cycling and resistance exercise. Med Sci Sports Exerc, 50(3), 624-633.
Company: Philips Research, Eindhoven, Netherlands
Literature:
- Levine, J., Melanson, E. L., Westerterp, K. R., & Hill, J. O. (2003). Tracmor system for measuring walking energy expenditure. European journal of clinical nutrition, 57(9), 1176-1180.
- Levine, J., Baukol, P. A., & Westerterp, K. R. (2001). Validation of the Tracmor triaxial accelerometer system for walking. Medicine and science in sports and exercise, 33, 1593-1597.
Company: Philips Research, Eindhoven, Netherlands
Literature:
Company: Philips DirectLife, Amsterdam, Netherlands
Literature:
- Valenti, G., Camps, S. G. J. A., Verhoef, S. P. M., Bonomi, A. G., & Westerterp, K. R. (2014). Validating measures of free-living physical activity in overweight and obese subjects using an accelerometer. International journal of obesity, 38(7), 1011-1014.
- Sijtsma, A., Schierbeek, H., Goris, A. H., Joosten, K. F., van Kessel, I., Corpeleijn, E., & Sauer, P. J. (2013). Validation of the TracmorD triaxial accelerometer to assess physical activity in preschool children. Obesity, 21(9), 1877-1883.
- Bonomi, A. G., Plasqui, G., Goris, A. H., & Westerterp, K. R. (2010). Estimation of free‐living energy expenditure using a novel activity monitor designed to minimize obtrusiveness. Obesity, 18(9), 1845-1851.
- Bonomi, A. G., Plasqui, G., Goris, A. H., & Westerterp, K. R. (2009). Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. Journal of applied physiology, 107(3), 655-661.
Company: Kineteks Corp., Vancouver, Canada
Literature:
Company: Taewoong Medical Co. Ltd., Gyeonggido, Korea
Literature:
Company: Professional Products, Madison, WI, USA
Literature:
Company: Professional Products, Madison, WI, USA
Literature:
- Leenders, N. Y., Sherman, W. M., & Nagaraja, H. N. (2006). Energy expenditure estimated by accelerometry and doubly labeled water: do they agree?. Medicine and science in sports and exercise, 38(12), 2165-2172.
- King, G. A., Torres, N., Potter, C., Brooks, T. J., & Coleman, K. J. (2004). Comparison of activity monitors to estimate energy cost of treadmill exercise. Medicine and science in sports and exercise, 36(7), 1244-1251.
- Ramirez-Marrero, F. A., Smith, B. A., Sherman, W. M., & Kirby, T. E. (2004). Comparison of methods to estimate physical activity and energy expenditure in African American children. International journal of sports medicine, 363-371.
- Rowlands, A. V., Thomas, P. W., Eston, R. G., & Topping, R. (2004). Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Medicine & Science in Sports & Exercise, 36(3), 518-524.
- Chen, K. Y., Acra, S. A., Majchrzak, K., Donahue, C. L., Baker, L., Clemens, L., ... & Buchowski, M. S. (2003). Predicting energy expenditure of physical activity using hip-and wrist-worn accelerometers. Diabetes technology & therapeutics, 5(6), 1023-1033.
- DeVoe, D., Gotshall, R., & McArthur, T. (2003). Comparison of the RT3 Research Tracker and Tritrac R3D accelerometers. Perceptual and Motor Skills, 97(2), 510-518.
- Rodriguez, G., Béghin, L., Michaud, L., Moreno, L. A., Turck, D., & Gottrand, F. (2002). Comparison of the TriTrac-R3D accelerometer and a self-report activity diary with heart-rate monitoring for the assessment of energy expenditure in children. British Journal of Nutrition, 87(6), 623-631.
- Hendelman, D., Miller, K., Baggett, C., Debold, E., & Freedson, P. (2000). Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Medicine and science in sports and exercise, 32(9 Suppl), S442-9.
- Nichols, J. F., Morgan, C. G., Sarkin, J. A., Sallis, J. F., & Calfas, K. J. (1999). Validity, reliability, and calibration of the Tritrac accelerometer as a measure of physical activity. Medicine and science in sports and exercise, 31(6), 908-912.
- Eston, R. G., Rowlands, A. V., & Ingledew, D. K. (1998). Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. Journal of applied physiology, 84(1), 362-371.
- Welk, G. J., Corbin, C. B., & Kampert, J. B. (1998). The validity of the Tritrac-R3D activity monitor for the assessment of physical activity: II. Temporal relationships among objective assessments. Research quarterly for exercise and sport, 69(4), 395-399.
- Chen, K. Y., & Sun, M. (1997). Improving energy expenditure estimation by using a triaxial accelerometer. Journal of applied Physiology, 83(6), 2112-2122.
U
Company: Gulf Coast Data Concepts, Waveland, MS, USA
Literature:
V
Company: OEM, Guangdong, China
Literature:
Company: Agartee Technology Inc., Vancouver, Canada
Literature:
Company: VitaBit Software International B.V., Eindhoven, Netherlands
Literature:
Company: Temec Instruments B.V., PC Heerlen, Netherlands
Literature:
W
Company: Walk4Life, Inc., Plainfield, IL, USA
Link:
Literature:
Company: Walk4Life, Inc., Plainfield, IL, USA
Link:
Literature:
- Johnson, M. (2015). Activity monitors step count accuracy in community-dwelling older adults. Gerontology and geriatric medicine, 1, 2333721415601303.
- Johnson, M., Meltz, K., Hart, K., Schmudlach, M., Clarkson, L., & Borman, K. (2015). Validity of the Actical activity monitor for assessing steps and energy expenditure during walking. Journal of Sports Sciences, 33(8), 769-776.
- Nielson, R., Vehrs, P. R., Fellingham, G. W., Hager, R., & Prusak, K. A. (2011). Step counts and energy expenditure as estimated by pedometry during treadmill walking at different stride frequencies. Journal of Physical Activity and Health, 8(7), 1004-1013.
Company: Walk4Life, Inc., Plainfield, IL, USA
Link:
Literature:
Company: Walk4Life, Inc., Plainfield, IL, USA
Link:
Literature:
Company: Walk4Life, Inc., Plainfield, IL, USA
Link:
Literature:
- Schneider, P. L., Crouter, S. E., & Bassett, D. R. (2004). Pedometer measures of free-living physical activity: comparison of 13 models. Medicine and science in sports and exercise, 36(2), 331-335.
- Schneider, P. L., Crouter, S. E., Lukajic, O., & Bassett Jr, D. R. (2003). Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Medicine and science in sports and exercise, 35(10), 1779-1784.
- Crouter, S. E., Schneider, P. L., Karabulut, M., & Bassett Jr, D. R. (2003). Measuring steps, distance, and energy cost. Med Sci Sports Exerc, 35(8), 1455-1460.
Company: Walk4Life, Inc., Plainfield, IL, USA
Link:
Literature:
Company: Walk4Life, Inc., Plainfield, IL, USA
Link:
Literature:
- Saunders, T. J., Gray, C. E., Borghese, M. M., McFarlane, A., Mbonu, A., Ferraro, Z. M., & Tremblay, M. S. (2014). Validity of SC-StepRx pedometer-derived moderate and vigorous physical activity during treadmill walking and running in a heterogeneous sample of children and youth. BMC Public Health, 14(1), 1-9.
- Hart, T. L., Brusseau, T., Kulinna, P. H., McClain, J. J., & Tudor-Locke, C. (2011). Evaluation of low-cost, objective instruments for assessing physical activity in 10–11-year-old children. Research quarterly for exercise and sport, 82(4), 600-609.
Company: Walk4Life, Inc., Plainfield, IL, USA
Link:
Literature:
Company: Omron Healthcare Europe BV, Netherlands
Link: https://www.omron-healthcare.co.uk
Literature:
Company: Computer Science Applications, Shalimar, FL, USA
Link:
Literature:
Company: AMI, Ambulatory Monitoring Inc, New York, USA
Link: https://www.ambulatory-monitoring.com
Literature:
Company: CB Rank, Greater Boston, New England, USA
Link: https://www.whoop.com/
Literature:
- Miller, D. J., Roach, G. D., Lastella, M., Scanlan, A. T., Bellenger, C. R., Halson, S. L., & Sargent, C. (2021). A validation study of a commercial wearable device to automatically detect and estimate sleep. Biosensors, 11(6), 185.
- Miller, D. J., Lastella, M., Scanlan, A. T., Bellenger, C., Halson, S. L., Roach, G. D., & Sargent, C. (2020). A validation study of the WHOOP strap against polysomnography to assess sleep. Journal of Sports Sciences, 38(22), 2631-2636.
Company: RealTrack Systems, Almeira, Spain
Link: https://www.hudl.com/en_gb/products/wimu
Literature:
X
Y
Company: Yamasa Tokei Keiki Co. Ltd., Tokyo, Japan
Link: http://www.yamasa-tokei.co.jp/
Literature:
- Brown, D. K., Grimwade, D., Martinez-Bussion, D., Taylor, M. J. D., & Gladwell, V. F. (2012). The validity of the ActiPed for physical activity monitoring. International journal of sports medicine, 431-437.
- Colley, R. C., Barnes, J. D., Leblanc, A. G., Borghese, M., Boyer, C., & Tremblay, M. S. (2013). Validity of the SC-StepMX pedometer during treadmill walking and running. Applied Physiology, Nutrition, and Metabolism, 38(5), 520-524.
- Stone, M. R., Esliger, D. W., & Tremblay, M. S. (2007). Comparative validity assessment of five activity monitors: does being a child matter?. Pediatric Exercise Science, 19(3), 291-309.
- Storti, K. L., Pettee, K. K., Brach, J. S., Talkowski, J. B., Richardson, C. R., & Kriska, A. M. (2008). Gait speed and step-count monitor accuracy in community-dwelling older adults. Medicine and science in sports and exercise, 40(1), 59-64.
Company: Yamasa Tokei Keiki Co. Ltd., Tokyo, Japan
Link: http://www.yamasa-tokei.co.jp/
Literature:
- O’Neill, B. M. S. M., McDonough, S. M., Wilson, J. J., Bradbury, I., Hayes, K., Kirk, A., ... & Tully, M. A. (2017). Comparing accelerometer, pedometer and a questionnaire for measuring physical activity in bronchiectasis: a validity and feasibility study. Respiratory research, 18, 1-10.
- Turner, L. J., Houchen, L., Williams, J., & Singh, S. J. (2012). Reliability of pedometers to measure step counts in patients with chronic respiratory disease. Journal of cardiopulmonary rehabilitation and prevention, 32(5), 284-291.
- Ummels, D., Beekman, E., Theunissen, K., Braun, S., & Beurskens, A. J. (2018). Counting steps in activities of daily living in people with a chronic disease using nine commercially available fitness trackers: Cross-sectional validity study. JMIR mHealth and uHealth, 6(4), e8524.
Company: Yamasa Tokei Keiki Co. Ltd., Tokyo, Japan
Link: http://www.yamasa-tokei.co.jp/
Literature:
- Cyarto, E. V., Myers, A., & Tudor-Locke, C. (2004). Pedometer accuracy in nursing home and community-dwelling older adults. Medicine and science in sports and exercise, 36(2), 205-209.
- Martin, J. B., Krc, K. M., Mitchell, E. A., Eng, J. J., & Noble, J. W. (2012). Pedometer accuracy in slow-walking older adults. International journal of therapy and rehabilitation, 19(7), 387-393.
- Rowlands, A. V., & Eston, R. G. (2005). Comparison of accelerometer and pedometer measures of physical activity in boys and girls, ages 8–10 years. Research quarterly for exercise and sport, 76(3), 251-257.
Company: Yamasa Tokei Keiki Co. Ltd., Tokyo, Japan
Link: http://www.yamasa-tokei.co.jp/
Literature:
- Maddocks, M., Petrou, A., Skipper, L., & Wilcock, A. (2008). Validity of three accelerometers during treadmill walking and motor vehicle travel. British journal of sports medicine.
- Motl, R. W., McAuley, E., Snook, E. M., & Scott, J. A. (2005). Accuracy of two electronic pedometers for measuring steps taken under controlled conditions among ambulatory individuals with multiple sclerosis. Multiple Sclerosis Journal, 11(3), 343-345.
Company: Yamasa Tokei Keiki Co. Ltd., Tokyo, Japan
Link: http://www.yamasa-tokei.co.jp/
Literature:
- Dudek, N. L., Khan, O. D., Lemaire, E. D., Marks, M. B., & Saville, L. (2008). Ambulation monitoring of transtibial amputation subjects with patient activity monitor versus pedometer. Journal of Rehabilitation Research & Development, 45(4).
- Leicht, A. S., & Crowther, R. G. (2007). Pedometer accuracy during walking over different surfaces. Medicine and science in sports and exercise, 39(10), 1847-1850.
- Trapp, G. S., Giles-Corti, B., Bulsara, M., Christian, H. E., Timperio, A. F., McCormack, G. R., & Villanueva, K. (2013). Measurement of children's physical activity using a pedometer with a built-in memory. Journal of Science and Medicine in Sport, 16(3), 222-226.
- Wallmann-Sperlich, B., Froböse, I., Reed, J. L., Mathes, S., & Sperlich, B. (2014). How accurate are Omron X-HJ-304-E and Yamax SW-700/701 pedometers at different speeds and various inclinations?. The Journal of sports medicine and physical fitness, 55(1-2), 113-117.
Company: Yamasa Tokei Keiki Co. Ltd., Tokyo, Japan
Link: http://www.yamasa-tokei.co.jp/
Literature:
- Abel, M. G., Hannon, J. C., Eisenman, P. A., Ransdell, L. B., Pett, M., & Williams, D. P. (2009). Waist circumference, pedometer placement, and step-counting accuracy in youth. Research quarterly for exercise and sport, 80(3), 434-444.
- BASSETT, D. R. (2000). Validity of four motion sensors in measuring moderate intensity physical activity. Medicine & Science in Sports & Exercise, 32(9), S471-S480.
- Beets, M. W., Patton, M. M., & Edwards, S. T. A. C. E. Y. (2005). The accuracy of pedometer steps and time during walking in children. Medicine and Science in Sports and Exercise, 37(3), 513-520.
- Briseno, G. G., & Smith, J. D. (2014). Pedometer accuracy in persons using lower-limb prostheses. JPO: Journal of Prosthetics and Orthotics, 26(2), 87-92.
- Crouter, S. E., Schneider, P. L., Karabulut, M., & Bassett Jr, D. R. (2003). Measuring steps, distance, and energy cost. Med Sci Sports Exerc, 35(8), 1455-1460.
- Cuberek, R., Ansari, W. E., Frömel, K., Skalik, K., & Sigmund, E. (2010). A comparison of two motion sensors for the assessment of free-living physical activity of adolescents. International journal of environmental research and public health, 7(4), 1558-1576.
- Dueker, D., Gauderman, W. J., & McConnell, R. (2012). Accuracy of a new time-resolved step counter in children. Pediatric exercise science, 24(4), 622-633.
- Fulk, G. D., Combs, S. A., Danks, K. A., Nirider, C. D., Raja, B., & Reisman, D. S. (2014). Accuracy of 2 activity monitors in detecting steps in people with stroke and traumatic brain injury. Physical therapy, 94(2), 222-229.
- Gao, Z., Lee, A. M., Solmon, M. A., Kosma, M., Carson, R. L., Zhang, T., ... & Moore, D. (2010). Validating Pedometer-Based Physical Activity Time against Accelerometer in Middle School Physical Education. ICHPER-SD Journal of Research, 5(1), 20-25.
- Hasson, R. E., Haller, J., Pober, D. M., Staudenmayer, J., & Freedson, P. S. (2009). Validity of the Omron HJ-112 pedometer during treadmill walking. Medicine and Science in Sports and Exercise, 41(4), 805-809.
- Hendelman, D., Miller, K., Baggett, C., Debold, E., & Freedson, P. (2000). Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Medicine and science in sports and exercise, 32(9 Suppl), S442-9.
- Karabulut, M., Crouter, S. E., & Bassett, D. R. (2005). Comparison of two waist-mounted and two ankle-mounted electronic pedometers. European journal of applied physiology, 95, 335-343.
- Lee, J. A., & Laurson, K. R. (2015). Validity of the SenseWear armband step count measure during controlled and free-living conditions. Journal of Exercise Science & Fitness, 13(1), 16-23.
- Lee, J. A., Williams, S. M., Brown, D. D., & Laurson, K. R. (2015). Concurrent validation of the Actigraph gt3x+, Polar Active accelerometer, Omron HJ-720 and Yamax Digiwalker SW-701 pedometer step counts in lab-based and free-living settings. Journal of sports sciences, 33(10), 991-1000.
- Schneider, P. L., Crouter, S. E., Lukajic, O., & Bassett Jr, D. R. (2003). Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Medicine and science in sports and exercise, 35(10), 1779-1784.
- Schneider, P. L., Crouter, S. E., & Bassett, D. R. (2004). Pedometer measures of free-living physical activity: comparison of 13 models. Medicine and science in sports and exercise, 36(2), 331-335.
- Smith, J. D., & Schroeder, C. A. (2010). Pedometer accuracy in elementary school children while walking, skipping, galloping, and sliding. Measurement in Physical Education and Exercise Science, 14(2), 92-103.
- Strath, S. J., Bassett, D. R., Swartz, A. M., & Thompson, D. L. (2001). Simultaneous heart rate-motion sensor technique to estimate energy expenditure. Medicine & Science in Sports & Exercise, 33(12), 2118-2123.
Company: Yamasa Tokei Keiki Co. Ltd., Tokyo, Japan
Link: http://www.yamasa-tokei.co.jp/
Literature:
- Cruz, J., Brooks, D., & Marques, A. (2017). Accuracy of piezoelectric pedometer and accelerometer step counts. Journal of Sports Medicine and Physical Fitness, 57(4), 426-433.
- Hergenroeder, A. L., Barone Gibbs, B., Kotlarczyk, M. P., Perera, S., Kowalsky, R. J., & Brach, J. S. (2019). Accuracy and Acceptability of Commercial-Grade Physical Activity Monitors in Older Adults. Journal of Aging & Physical Activity, 27(2).
Company: Yamasa Tokei Keiki Co. Ltd., Tokyo, Japan
Link: http://www.yamasa-tokei.co.jp/
Literature:
- Schneider, P. L., Crouter, S. E., Lukajic, O., & Bassett Jr, D. R. (2003). Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Medicine and science in sports and exercise, 35(10), 1779-1784.
- Schneider, P. L., Crouter, S. E., & Bassett, D. R. (2004). Pedometer measures of free-living physical activity: comparison of 13 models. Medicine and science in sports and exercise, 36(2), 331-335.
Z
Company: Gaehwiler Electronic, Hombrechtikon, Switzerland
Literature:
Company: HopeLab non-profit organization, Redwood City, CA, USA
Literature:
Company: Institutes for Behavior Resources, Baltimore, MD, USA
Literature: